Apple II Apple Ias” ProDOS' 16 & Appltf; IT Applc IIgs ProDOS. 16
Reference =—=== Reference

Includes System Loader

Includes System Loader

85
§
§
§
§
§
§
§ls

-
Ay ey ey dey by ke ey b

=1

v

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrd Bogod Santiago San Juan

__

o APPLE COMPUTER, IN(

Copyright © 1987 by Apple
Computer, Inc

All pights reserved. No par of
this publication may be
reproduced, stored in 4 retrneval
a¥stem, or transmimed, in any
form ar by any means,
mechanical, elecironic
photocapying, recording, or
otherwise, without pricor writen
permission of Apple Computer,
Inc. Printed in the United States
of America

Apple, the Apple logo
AppleTalk, Disk 11, LaserWriter,
Lisa, ProDOS, and Unilhsk are
registered trademarks of Apple
Computer, Inc

Apple 1G5, Apple DeskTop Bus,
AppleWorks, and Macintosh are
trademarks of Apple Computer,
Inc

ITC Avant Garde Gothic, 1TC
Garamond, and [TC Zapf
[Hnghats are registered
trademarks of International
Typeface Corporauon

Microsofl is a registered
trademark of Microsoft
Corparation

POSTSCRIPT is 2 trademark of
Adobe Svstems Incorporated
Simultaneously published in the
United States and Canada

ISBN 0-201-17754-4
ABCDEFGHI)-DO-80877

First printing, May 1987

LICENSING REQUIREMENTS
vpple has a licensing {MOgram
wane developers

I leveloped
hesir

» and external
: distributing

Part |

Chapler 1

Contents

Figures and tables xi

Rodio and television Intederence x

Preface xv

Road map 1o the Apple [1GS technical manuals xvi

How o use this manual xviii

Other materials you'll need xwiii
Hardware and software xviil
Publications xix

Motations and conventions xx
Terminology xx

Typographic conventions xxi

Watch for these xxi

How PraDOS 146 Works 1

About ProDOS 14 3

Background 4
What is ProD<0S 162 5

Programming levels in the Apple IIGS 5

Disks, volumes, and files 7
Memory use 8
External devices 9

ProDH25 16 and ProDOS 8 9
Upward compatibility 10
Downward compatibility 11

Eliminated Prol0S B system calls 11
New ProDOS 16 system calls 12

Crher features 12

Summary of ProDXO8 16 features 13

ahi
Ap
inh
fro
ao
por
W
the
indi
e
the
The
Caox
th

Apy
Tid
itk

Chopter 2 ProDOS 16 Fles 17

Chapler 3

Chapler 4

Using files 18
Filcnames 18
Pathnames 1%
Creating files 21
Opening files 21
The BEOF and Mark 22
Reading and writing files 24
Closing and fushing files 24
File levels 25

File format and organization 26
Directory files and standard files 26
File organization 27

" Spamse files 30

ProDOS 14 and Apple lics Memory 31

Apple 1G5 memory configurations 32
Special memory and shadowing 34
ProDOS 16 and System Loader memory map 34
Entry points and fixed locations 35
Memory management 36
The Memory Manager 37
Pointers and handles 38
How an application obtiins memory 39

PraDOS 16 and Extemnal Devices 41

Block devices 42
Character devices 43
Accessing devices 43
Mamed devices 44
Last device accessed 44
Block read and block wrile 44
Formatting a disk 45
Mumber of online devices 45
Device search at startup 45
Volume contral blocks 47
Interrupt handling 47
Uncliimed intermpis 45

Chopler 5 ProDOS 16 and the Operoting Envirenment 51

Apple 1G5 sysiem disks 52
Complete system disk 52
The SYSTEM.SETUP/ subdirectory 53
Application system disks 54
System starup 55
Boot initialization 56
Startup program selection 58
Starting and quitting applications 59
POUIT &0
Standard ProDO6 8 QUIT call 60
Enhanced ProDOS 8 QUIT call 60
ProDO5 16 QUIT call 61
QUIT procedure 62
Machine configuration at application launch 64
Pathname prefixes 65
Initial ProDOS 16 prefix values 67
Prold05 & prefix and pathname convention 68
Tools, firmware, and system software 70
The Memory Manager 70
The System Loader 70
The Scheduler 71
The User ID Manager 71
The System Failure Manager 72

Chapler 4 Programming With ProDOS 18 73

Application requirements 74
Stack and direct page 75
Automatic allocation of stack and direct page 75
Definition during program development 76
Allocation al run time 77
ProDOS 16 default stack and direct page 78
Manual allocation of stack and direct page 78
Managing systcm resources 79
Global variables 79
Prefixes B0
Mative mode and emulation mode 81
Setting initial machine configuration &1
Allocating memory 82
Loading another program 852
Using inmerrupts B3
Accessing devices B4
File creation/modification date and time 84

o I

==

4 Programming With PraDO5 14 {cantinued)
Revising a ProDOS 8 applicadion for ProlOS 16 BS

Memory management 26
Hardware configuration 87
Converling system calls 58
Modilfying intermupt handlers 88
Converting stack and zero page B2
{_‘,I'|m|_:|1l|2lI.I'.I'!'I.-"B.b'JEE[!-]JL'!.".I B9 -
Apple NG5S 1’r<‘.gr.1n1111|:r':.s \'l.-mlkahl:-r.-
Human Tnieface Guidelines S

Chapter

Chapler 7 Adding Reulines to proDOs 16 3
interrupt handlers 94 -
Interrupt handler conventlons :»1

(nstalling intermopt handlees ¢ 5]

i i ' L2
Making Dperating system calls during intermpts 90

partll ProDOS 14 System call Reference #7

Chapter 8 Making Pre0s 16 Calls 9

The call block 100
The parameler block 101
Types of paramelers 102
parameter block format Il:IE. B
Seming up 4 paramcies block in memony LU
Register values 104 y s
Lil‘lgrnp:lnsfln with the Pmnm_ﬁ call method 105
The ProDOS 16 Exerciscr 106 »
Farmat for system call descriplions 106

Chaopter @ File Housekeeping Calis 109
CREATE (301) 111
DESTROY (§02) 115
CHANGE_PATH (§04) 117
SET_FILE_INFO (505) 1 19
GET_FILE_INFC (s06y 123
VOLUME (308 128
SET _PREFIX (5090 131
CET PREFIX (S0A) 133
CLEAR_DACKUP_BIT (30B) 134

EEE————]

Chopter 10 FAle Access Calls 135
OPEN ($10) 137
NEWLINE ($11) 139
READ (512 141
WRITE ($13) 143
CLOSE (514) 145
FLUSH ($15) 144
SET_MARK (516) 147
GET_MARK (517) 148
SET_EOF ($18) 149
GET_EOF ($19) 150
SET_LEVEL ($14) 151
GET_LEVEL ($1B) 152

Chapler 11 Device Calls 153

GET_DEV_NUM (5200 155
GET_LAST DEV (321> 156
READ_BLOCK (§22) 157

WRITE_BLOCK ($23) 159

FORMAT (§24) 160

Chaopter 12 Environment Calls 143
GET_NAME (§27) 165
GET_BOOT_VOL (528) 166
QUIT (329 167
GET_VERSION ($24) 171

Chapter 13 Interrup! Control Calls 173

ALLOC_INTEREUPT (3313 175
DEALLOC_INTERRUPT (3328 177

Part Il The Systemn Loader 179

Chapter 14 Introduction fo the System Looder 181

Whal is the System Loader? 182
Loader terminology 183
Interface with the Memory Manager 184
Loading a relocatable segment 187
Load-file structure 187
Relocation 188

wil

Now A
have ¢

Apple
infim
fromid
acom
pomer
Whet
the ne
infoen

the o
Thesd
Caxnp
those
pples
Titles
itkes

L]

I

wili

Chapter 15

Chaopler 16

Chopler 17

System Looder Dofo Tables 191

Memory Segment Table 192

Jump Table 193

Creation of a Jump Table entry 195
Modification at load time 196
Use during execution 196
Jump Table diagram 197
Pathname Table 199
Mark List 201

Pragramming With the System Looder 203

Static programs 204

«Programming with dynamic segments 204

Programming with run-time libraries 205
User control of segment loading 206
Designing a controlling program 207
Shutting down and restarting applications 200
Summary: loader calls categorized 210

System Loader Calls 211

Introduction 212
How calls are made 213
Parameter types 213
Format for System Loader call descriptions 214
Loader Imitialization (3013 215
Loader Starmup (5023 216
Loader Shutdown {303) 217
Loader Version ($04) 218
Loader Reset (305 220
Loader Status ($06) 221
Initial Load ($090 222
Restart ($0A) 225
Load Segment by Mumber (508) 228
Unload Segment by Number (800 232
Load Segment by Mame (3000 234
Unload Segment (S0E} 236
Get Load Segment Info ($0F) 2
Get User 1D (3100 240
Get Pathname (5113 242
User Shutdown (812) 244
Jump Table Load 247
Cleanup 249

Appendites 251

Appendix A ProDOS 16 File Organizalion 253
tion of information on a volume 254

Cirganiza
iy [directory files 253

Pormat and ofganization o
Pointer fields 256 .
valume directory headers 250
Subdirectory headers 259
File entries 261
Reading a directory file 205

Formal and organization of stan
Growing a tee file 267
seedling files 270
Sapling files 270
Tree files 271
Using standard files
Sparse files 273

Locating & byte in a file 274
Header and entry fields 2753
The storage type atibute 275
The creation and last-modification fields
The access aftribute 277
The file type attribute 278
The auxiliary type anribute 2

dard files 267

772

278
Vil

Appendix B Apple Il Operating Systems 281

History 281
DOs 281
S05 282
ProDOS 8 282
Prol¥0s 16 283
Pascal 283
File compatibility 283 :
Reading DOS 3.3 and Apple 11 Pascal disks
Oyperating system similarity 2B5
[nput/Output 285
Filing calls 2B
Memory management 287
[nterrupts 288

284

l

Appendix C

Appendix D

Appendix E

The ProDOS 16 Exerclser 289

Starting the Exerciser 289
Making sysiem calls 290
Other commands 291
List Directory (L) 291
Maodify Memory (M) 291
Exil 1o Monitor (5 293
Quidt () 294

System Looder Technical Data 295

Object module formar 205
File types 295
Segment kinds 296
Record codes 297
Lead-file numbers 298
Load-segment numbers 208
Segment headers 290
Restrictions on segment header values 299
Page-aligned and bank-aligned segments 299
Entry point and global variables 300
User ID format 300

Error Codes 302

Praol¥5s 16 errors 302
Nonfatal errors 302
Fatal errors 307
Bootstrap errors 309

System Loader errors 310
Nonfatal errors 310
Fatal errors 311

Glossary 313
Indax 327

Chapler 1

Chapter 2

Chaopler 3

Chapter 4

Figures and tables

Proafoce xiv

Figure P-1

Table -1

Roadmap to the technical manuals xvii

The Apple IGS technical manuals xvi

About ProDOS 146 3

Figure 1-1
Figure 1-2

Peogramming levels in the Apple 1IGS 6
Example of a hierarchical file structure 8

ProDOS 14 Fles 17

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-3

Example of a FroDOS 16 file strocture 20
Automatic movement of EOF and Mark 23
Directory file format 27

Block organization of a directory file 28
Block organization of a standard file 29

ProDOS 14 and Apple llss Memaory 31

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Table 3-1
Tahle 3-2

Table 3:3

Apple IIGS memory map 32

PraDO5 16 and System Loader memory map 35

Pointers and handles 39

Memory allocatable through the Memory
Manager 40

Apple TGS memory units 33
ProD)O5 16 fixed locations 36

Memeary block amibules 37

ProDOS 14 and External Devices 41

Figure 4-1

Table 4-1

Irterrupt handling through ProDOS 16 48

Smartport number, slot number, and devies
number assignments 46

xl

Chapler 5

Chapler &

Chopher 14

Chapter 15

Chapter 16

ProDOS5 16 and the Operaling Environment 51

Figure 5-1 Boot initialization sequence 57
Figure 5-2 Startup program selection 53
Figure 5-3 Rur-time program selection (QUIT call) 63

Table 5-1 Contents of a complete Apple 1IGS system disk 53

Table 5-2 Required contents of an Apple 1G5 application
systern disk 55

Table 5-3 Examples of prefix use 66

Tahle 5-4 Initial ProDOS 16 prefix values 67

Table 5-5 Initial ProDOS & prefix and pathname values 63

Programming With ProDOS 16 73
Pigure 6-1 Automatic direct-page/stack allocation 76

Table 6-1 Apple 11GS equivalents to ProDOS 8 global page
information 80

introduction lo the System Loader 181

Figure 141 Loading a relocatable segment 188
Table 14-1 Load-segment/memory-block relationships (at load
time) 186

Systemn Looder Dota Tables 191

Figure 15-1 Memory Segment Table entry 192
Figure 15-2 Jump Table Directory entry 194

Figure 15-3 Jump Table entry {unloaded state) 195
Figure 1544 Jump Table entry (oaded state) 197
Figure 15-5A How the Jump Table works 108

Figure 15-5B How the Jump Table works 199

Figure 156 Pathname Table entry 200

Figure 157 Mark List format 202

Programming With the System Looder 203
Table 16-1 System Loader functions categorized by caller 210

Appendiz A ProDOS 14 Fle Orgonization 253

Figure A-1 Block organization of a volume 254

Figure A-2 Dhirectory file format and organization 255
Figure A-3 The volume directory header 257

Figure A-4 The subdirectory header 259

Figure A-5 The file entry 262

Figure A-6 Format and organization of a seedling file 270
Figurne A-7 Format and organization of a sapling file 271
Figure A-B Format and organization of a wee fle 272
Figure A-9 An example of sparse file organization 274
Figure A-10 File Mark format 275

Figure A-11 Date and time format 276

Figure A-12 Access byte formar 277

Table A-1 Storage type values 276
Table A-2 ProDOS file types 278

Appendix B Apple Il Operating Systems 281
Table B-1 Tracks and sectors 1o blocks (140K disks) 284

Appendix T Tha ProDOS 16 Exercisar 289
Table C-1 ASCII characier set 292

Appendix D System Loader Technical Data 295

Figure D-1 Segment kind format 296
Figure [-2 User ID format 301

Preface

The Appde IFGS Prol08 16 Reference is a manual for software

developers, advanced progmmmers, and athers who wish o

understand the technical aspects of the Apple 1IGS™ operating

system. In particular, this manual will be useful to you if you want o

write

O a stand-alone program that automatically runs when the
computer 15 staned up

a routing that catalogs disks, manipulates sparse files, or
olherwise interacts with the Apple 11GS file system at 3 basic level

an interrupt handler
a program that loads and runs other programs

any program wsing segmented, dynamic code

‘The functions and calls In this manual are in assembly lnguags
format. If you are programming in assembly language, you may use
the same format 10 access operating system features. I you are
programming in 4 higher-level language Cor if your assembler
includes a ProD05® 16 macro library), you will use library Interface
routines specific 10 your langueage. Those library routines are not
described here; consult your langudge manual

Y

Road map to the Apple IIGs technical
manuals

The Apple 1G5 personal computer has many advanced features,
making it more complex than earlier models of the Apple® I1. To
describe it fully, Apple has produced a suite of technical manuals,
Depending on the way you intend 1o use the Apple IGS, vou may
need to refer to a select few of the manuals, or vou may need o refer

1o most of them.,

The technical manuals are listed in Table P-1. Figure P-1is a
diagram showing the relationships among the different manuals

Table P-1
The Apple llss technlcal manuals

TiHe

Subject

Technical Imtraduction to the Apple HGs

Apple I1GS Hardware Reference

Apple [IGS Firmware Reference

FProgrammer'’s Infroduction to the Apple G
Apple HGS Toolbox Reference: Volumes 1 and 2
Apple IIGS Programmer's Worlshaop Reference
Apple I1GS Programmer's Workshoh Assemblor Reference
Apple TGS Programmers Workshop C Reference
Prolx08 & Technical Reference Manual

Anple [IGE Pro0S 16 Reference

Human Imferface Guidelines

Apgle Numerics Manual

wvl Frafoce

What the Apple 0GS is

Machine internals—hardwaire
Machine internals—{irmware
Concepts and 2 sample program
How to use the Apple [IGS tools
The development environment
using the APW assembler

Using C on the Apple 1IGS

Standard Apple Il operating system
Apple IIGS operating system and Ioader
Guidelines for the desktop merface

Numerics for all Apple computers

Ta stort finding ot
about the Apple IG5

Ter beam how
the Appla IG5 works

To #hart learming
o program the Apole IG5

To use The toolkioy

To use the developrran
anvironomes

To eparote on filee —

Towse C

To usa
cssernibly language

Figure P-1
Roodmap fo the fechnical monuals

Road mop to the Apple lies technical manuois

xvll

xvlil

Prafoce

How to use this manual

The Apple ITes ProDX 16 Refererce is both 2 reference manual
and a learning toal, It is divided into several pans, to help you
quickly find what you need.

0 Part 1 describes ProDOS 16, the central pan of the Apple 1IGS
Dperating syslem

O Pan IT lists and explains the ProDOS 16 operating system calls

o1 Part 11 describes the System Loader and Hsis all loader calls

O The final part consists of appendixes, a glossary, and an index

The first chapter in each part is introductory; read it fiest if you are
not already familiar with the subject. The remaining chaplers are
primarily for reference, and need not be read in any particular
order, The PmlDOS 16 Exerciser, on a disketle included with the
manual, provides a way (o practice making ProDOS 16 calls befose
actually coding them

This manual does nol explain 65C816 assembly language. Refer 1o
Appie G5 Programmer’s Workshop Assembler Seference for
information on Apple 1IGS assembly language programming.

This manual does not give a detailed description of ProDOS B, the
Apple [operating system from which ProDOS 16 was derived, Fora
synopsis of the differences between ProDOS 8 and ProDOS 16, see
Chapter 1 of this manual. For more detalled information on
ProD0S 8, sec ProDOS 8 Technical Reference Manual

Other materials you'll need

Hardware and software

To use the products described in this manual, vou will need an
Apple TIGs with at least one extermal disk drive (Apple recommends
two drives). Prold0S 16 and the System Loader require only the
minimum memory configuration (256K RAMD, although Apple 1G5
Programmer's Workshop and many application programs may
fequire more mMEmory.

You will also need an Apple 11GS system disk, A system disk contalns
Prol}05 16, ProDOS 8, the System Loader, and other system
software necessary for proper functioning of the computer. A
system disk may also comtain application programs,

If you wish 1o practice making ProDOS 16 operating system calls you
will need the Prol»05 16 Exerciser, a program on the diskene
included with this manual

Publications

This manual is the only reference for ProDOS 16 and the System
Loader, You may find useful related information in any of the
publicatons listed under “*Hoadmap to Apple 11GS Technical
Manuals® in this preface; in particular, you may wish to refer 1o the
following:

m The technical introduction: The Technical miroduction fo
the Apfile TGS is the first book in the suite of wechnical manuals
about the Apple 1IGS, It describes all aspects of the Apple 11GS,
including its features and’'general design, the program
environments, the wolbox, and the development environment

® The programmer's introduction: When you start writing
programs for the Apple 1G5 |, the Programmer's Introduction fo
the Apple IS provides the concepts and guidelines you need, It
is a starting point for programmers wriling event-driven and
segmented applications that use routines in the Apple 1165
Toolbox.

B The firmware reference manual: The Afple TGS Firmuare
Reference describes the routines that are stored in the machine's
read-only memory (ROMY, it includes information about
internapt routines and low-level 140 subroutines for the serial
ports and disk port. The Firmware Reference also describes the
Monitor, a low-level programming and debugging aid for
assembly-language programs,

® The woolbox manuals: Like the Macintosh™, the Apple 1G5 has
a built-in toolbox. The two volumes of the Apde TGS Toolbox
Heference inroduce concepts and terminology, show how to use
the tocls, and tell how to write and install your own ool set They
also describe the workings of some of the system-ievel 1ool sets,
such as the Memory manager, that interact closely with proD3OS
16 and the System Loader.

COther materials you'll need ®ix

K

Praloce

s The Programmer's Workshop manuals: The development
environment on the Apple TGS is the Apple IG5 Programmer's
Workshop (AFW), APW is a set of programs that enable you o
create and debug application programs on the Apple N1GS. The
Apple [IGS Programmer’s Workshop Reference includes
information about the parts of the workshop that are ;
independent of programming language: the shell, the m.‘n'rnr, the
linker, the debugger, and the utilities. In addition, there is a
separate reference manual for each programming language. The
manuals for the languages Apple provides are the Apple IG5
Programmer's Workshop Assembler Reference and the Apple
HiGs Programmer's Workshopy © Reference.

8 The ProD0S § manual: ProDOS5 B (previously called just
P08 is compatible with all Apple 1l computers, including the
Apple TGS, As a developer of Apple [IGS programs, you may
need to refer o the ProDOS & Techaical Reference Manual it
you are developing programs to run on standard Apple I's as
well as on the Apple 1IGS, or il you ae converting a Prolx5 8-
based program to nen under ProDOS 16.

Notui__i;ns and ;::nnvenfians

To help make the manual more understandable, the following
conventions and definivons apply throughout.

Terminology

This manual may define certain terms, such as Apple [1 and
Pral0s, slightly differently than what you are used 1o Please note:

m Apple Il: A general reference 1o the Apple [T family of
computers, especially those that may use ProlX25 8 or ProlXO5
16 as an operating system, It includes the 64k Apple 11 Plus, the
Apple Tic, the Apple Ilc, and the Apple [1GS.

s standard Apple I: Any Apple I computer that is mot an Apple
1G5, Since previous members of the Apple 11 family share many
characteristics, il is uscful to distinguish them as a group from the
Apple 1G5, A standard Apple 11 may also be called an 8-bit Apple
i because of the &hit regisiers in iis 6502 or 65002
I'I'IIILTUFIPI.":-I.'I." S50,

Imporant

Warning

8 ProDOsS: A general term describing the family of operating
systems developed for Apple 11 computers. It includes both
ProDOS 8 and ProDXOS 16; it does not include DOS 3.3 ar 505

® ProDOS 8 The 8-bit Prol}0S operating system, through version
1.2, originally developed for standard Apple 11 compulers but
compatible with the Apple 11GS. In previous Apple 11
documentation, ProDOS 8 is called simply ProDos,

® ProDOS 16: A 16-bit operating system developed for the Apple
[IGE computer, It is the system described in this manual

irpogruphl-t: conventions

Each new lerm introduced in this manual is printed first in bold
type. That lets you know that the term has not been defined earlier,
and also indicates that there s an entry for it in the glossary,

Assembly language labels, entry points, routine names, and file
mames thal appear in lext passages are printed in a special typeface
(for example, name_length and GET _ENTRY). Function names
that are English language terms are printed with initial caps (for
example, Load Segment By Number). When the name of a label or
variable is used to mean the vabie of that variable rather than is
name, the word is printed in italics (for example, “the first
name_lemgth bytes of this field contain the volume name i X

Watch for these
The following words mark special messages to you

Nate: Text set off in this manner—with a word or phrase such as
Note or By the way—presents sidelights or interesting points of
information.

Taxt set off In this manner—with the word Imparant —presents
impartant Information or Insfructions.

Teot st off In this manner—with the ward Wamlng —indicates
potential sedous probdems.

Notafions and conventions xx|

How ProDOS 16 Works

This pan of the manual gives a general description of ProDOS 16.
Profio5 16 is the disk operating system for the Apple 11G5; it
provides file management and input/output capabilites, and
contrels certain other aspects of the Apple 11G5 operatng
environment.

Chﬂ pter I This chapter introduces ProDOs 16, It gives background

information on the development of Prol0OS 16, followed by an
overview of ProDOS 16 in relation to the Apple 1165 A brief
comparison of ProDOS 16 with ProDOS 8, its closest refative in th

Apple 15 followed by a reference list of the most pertinent
Abuuf PTODOS 16 S I owed by a reference list of the most pentine

The chapler's orgar
wi

hly parallels thag of Part | as a
u to the appropriate chapter for more
information on each aspect of ProDOS 16

ale, Bach section refes yr

Background

The Apple [GS is the late i
the 65C816, is a successor 1o the standard Apple [1s' 6502 and
functions in both &-bit (6502 emulation) mode and 16-bit {native)
mode (see Technical miroduction fo the Apple IFGs). In
secordance with the desipn philosophy governing all Apple I
family products, the Apple TGS is compatible with standard

Apple I softwire—most presently available Apple 11, Apple Tlc,

and Apple le applications will run without modification on the
Apple 1IGS

er, Its microprocsssor,

retain this
Apple TGS requines two separile operaling sysie
and ProldOs 16

mpatibility while adding new features, the
D0 B

Prol30% & is the operating system for standard Apple 11
compauters. The Apple TIGS uses Prol0s 8 and puts the processo
into emulation mode in order to nan standard-Apple 11

applications,

ProDOS 16 is a newly developed system; it takes advantage of
Apple TGS fros that standard Apple 1T computers do not

hawe, | = 1165 uses ProDOS 16 and puts the processor into
native ma in order to run Apple [1GS applications

3 4 Part |: How ProlDOSs 16 Works

The user need not wormy abour which operaling system is active at
any one time, Whenever the Apple 11G5 loads an application, it
automatically loads the proper operating system for it

PraDOS 8 on the Apple 1IGS functions identically to Pral305 8 on
cther Apple I computers, For a complete description of ProDOs 8,
see Prof08 8 Technical Reference Manual

What Is ProDOS 167

Prol}0s 16 is the central pan, or kernel, of the Apple 1IGS
operating system. Although other software components (such as the
System Loader described in this manual) may be thought of as parts
af the overall operating system, ProDOS 16 is the key component. 1t
manages the creation and modification of files. It accesses the disk
devices on which the files are stared and retrieved, |1 dispatches
interrupt signals 1o Interrupt handlers. It also conteols cernain
aspects of the Apple 1GS operating environment, such as patfiname
prefixes and procedunes for quitting programs and staning new
s,

Programming levels in the Apple lics

Figure 1-1 is a sim|

plified lagical diagram of the Apple 11GS, from a
programmer’s point of view, Boxes representing parts of the system
form a verical hierarchy; arrows betwesn the boxes show the flow of
control or execution from one level to the next. At the highest level
is the programmer or user; he directly manipulates the execution of
the application program that runs on the machine. The

application, in turn, interacs directly with the next lower level of
saftware—ihe Operating system. The operating system interacts with
the very lowest level of software in the machine: the basilt-in
firmware and toolbox routines. Those routines directly manipulate
the switches, registers, and input/output devices that constitute the
computer's hardware

Chapter 1: Akout PraDos 14 5

(ool cok)
(character des

oesCo
accesil

v
. :
nfomupl h avents
Hordwore pr——y
Figure 1-1

Progromming levels in the Apple Bies

This hierarchical view shows that the operating system i an
inlermediary between the application program and d'u: computer
hardware, A program need not know the details of mc.imdu:l
hardware devices It acoesses; instead, it makes Up::rjln:lg Sysiom
calls, The operating system then translates those calls into the
proper instructions for whatever devices ane connected 1o the
SYSiEm.

The lowest software level, between the operating system and .
hardware, is extensively developed in the Apple I1GS. It consists of
two pans; the firmware, a collection of raditonal .H{'}M-bﬂscd
routines for pedforming such tasks as character 170, internipt o
handling, and memory manipulation; and the toolbox, a]armi. s
of assembly-language routines and macros useful to all levels o
software, As the arrows on Figure 1-1 show, ProDOS 16 accesses the
firmware/tools level of the Apple 1IGS directly, but so do _
application programs. In other words, for tool calls and ﬁ_‘;xmﬂ
wypes of /0, applications bypass ProDOS 16 and interact directly

with bowe-level system softwane.

Part | How ProDOS 16 Works

The arrows pointing symeard along the diagram show a counterflow
of information, in which lower levels in the machine notify higher
levels of impartant hardware conditions. Interropts from
hardware devices are handled both by firmware and by ProD{OS 16;
events are similar (o interrupts but are handled by applications
through tool calls

Disks, "ll-'l-.'.-I:]l..l.l"l"‘iES. and files

ProDOS 16 communicates with several different types of disk drives,
but the type of drive and its physical location (slot or port number)
need not be known 1o a program that wants to access that drive.
Instead, 2 program makes calls 1o ProlDOS 16, identifying the disk it
wanis (o access by iis volume name or device name.

Information on a volume is divided into files, A file is an ordered
collection of bytes that has several awributes, including a name and
a file type. Files are either standard fles {containing any type of
code o data) or directory files (containing the names and disk
locations of other files), When a disk is initially formated, its
volume directory file is created; the volume directory has the
same mime as the volume iself

ProlOs 16 suppons a hierarchical file system, meaning that
volume directories can conlain the names of either files or other
directories, called subdirectories; subdirectorics in tuen can
contain the names of files or other subdirectories. In a hierarchical
file system, a fAle is identified by is pathname, 3 sequence of file
names starting with the volume directory and ending with the name
of the file. Figure 1-2 shows the relationships among files in a
hierarchical file system

Chapter 1: About ProDas 146 7

Flgure 1-2)
Exarmpie of a hlercrchicol fle strochure

See Chapter 2 and Appendix A for denailed information on Prol)OS
: “hapter 2 ar :
16 file structure, organization, and formats,

Memory use

ProfX3S 16 and application programs on the Apple TGS are
relioved of most memory management tasks, The Memory :
Manager, an Apple TIGS ol set, allocates all memory space, Mdf'LPﬁ
track ol available memory, and [nees memory no longes necde .:n_.'
programs. If a program needs to allocate some memary s].l:;_mc", It
requests the space through 3_-_':4|| o the :'-1|_'|1'|n:."r' Manager, t'-l-.ml-\n
program makes a ProDOS 16 call that resulis in nnenu«.ar!.: allocation,
ProlH3S 16 requests the space from the Memory Mamager and
allocates it to the program

The Memory Manager is described further in Chapter 3 of this
manual, and In Appe s Toolbax Reference

Port I How ProDos 16 Works

External devices

Frold2s 16 communicates only with block devices, such as disk
drives. Programs that wish o acoess character devices such as
printers and communication pors must do so directly, either
through the device firmware or through Apple IG5 Toolbox
routines writlen for those devices, See Apple TGS Firmuare
Reference and Apple Hcs Toolbox Reference

Lertiin devices generite intermupts to el the computer that the
device needs anention. ProDOS 16 is able to handle up o 16
nterrupling devices, You may place an intermupt-handling routine
into service through a ProDOS 16 call; vour routine will then be
called each time an intermapt ocours, I you install more than one
rouine, the routines will be polled in the order in which they were
inszalled

You may also remove an interrupt routine with a ProDOS 16 call, In
writing, installing, and removing interrupt handling routines, be

sure 10 follow the conventions and requirements given in Chapter 7
“Adding Routines to ProDO5 16,*

ProDOS 16 and ProDOS 8

ProDO§ 16, although derlved [rom ProDOS 8, adds several
capabilities 1o support the new features and operating
configurations of the Apple IG5, For example:

1 Because the 63C816 microprocessor functions in beth 8-hit
(emulation) and 16-bit (native) execution modes, ProDOS 16 is
designed to accept system calls from applications running in
gither 8-hit or 16-bit mode, ProDdOS 8 accopes system calls from
applications running in &-bit mode only

Because the Apple 11GS has a total addressable memory space of
16Mb, ProDOS 16 has the ability to accept system calls from
anywhere in that memory space {addresses up 1o SFF FFFF), and
those calls can manipulate data anywhere in memary. Under
ProDO5 8, system calls can be made from memary addresses
below SFFTF only—the lowest 64K of memory

Chapter 1: About ProDos 14 o]

10

ProD0Os 16 relies on a sophisticated memory management
system (see Chapter ¥), instead aof the simple global page bit map
used by ProlxO8 8

3 Applications under ProDOS 16 must make calls 1o :1[|'r..'~:.".ﬂt.‘.
memory or to access system global variables, such as date and
time. svsem level, and 140 buffer addresses, L'rr:lDD’.S.S
maintains that information in the system global page in memory
bank $00, but under Prol}08 16 the global page {5 not suppored

O ProDS 16 also provides several programming convenionoes
aot available under ProDOS B, including named devices and
multiple, user-definable file prefises

‘U pwu?c omp?lbilihr

In a strict sense, PralOs 16 is not upwardly compatible from
PralH05 8, Programs written o function under Pm].‘-IU_S S_t:n_ an
Apple 11 will not run on the Apple [1GS, rirtder Prolios J:l:’1. withoul
some modification. Conceptually, however, ProDOS 16 &
upwardly compatible from ProD}OS B, in at least two ways:

1. The two operating systems are themselves similar in structure

The set of ProlOS 16 system calls is a superset of the PEDDOS

8 calls; for (almos() every ProDOS B system call, there i5 2

functionally equivalent ProDOS 16 call, usually with the same

NAmE

The calls are made in nearly identical ways in both ProDOS

systems, and the parameter blocks for passing values to

functions are lakd out similary

O ProDOS 16 uses exactly the same file system as ProDOS 8, It
can read from and write to any disk volume produced by
ProDO5 B

2. Both operating systems are included with the Apple 1165, Most
applications written for ProDOS 8 on standard Apple 11 .
compouters will Fun without modification on the Apple IIGS—not
uml::.r PraDOs 16, but under Prol05 8.

Part |: How ProDOSs 16 Warks

Thus, even though the individual operating systems are not
completely compatible, their stim on the Apple 11Gs computer s
completely upwardly compatible from other Apple I computers.
You never need be concerned with which operating system is
functioning—if you run an Apple I application, ProDOS 8 is
automatically loaded; if you run an Apple IIGS application, ProDOS
16 is automatically loaded. Chapter 5 explains the details of how
this is accomplished,

Downward compatibility

FraD05 16 is not downwardly compatible to ProDdOS 8,
Applications written for ProDO8 16 will not run on the Apple [1, Tlc,
or lle. The extra memory needed by Apple 11G5 applications and
the additional instructions recognized by the 650816
microprooessor make applications wrinen for ProDd05 16
incompatible with standard Apple 11 computers

Eliminated ProDOS 8 system calls

As mentioned under *Upward Compatibility,” maost ProDOS 8 calls
have functionally exact equivalents in ProDOS 16 However, some

ProDO5 8 calls do not appear in ProDOS 16 because they are
unnecessary, The eliminated calls are

RENAME The ProDOS 16 CHANGE_PATH call performs the
same function

GET_TIME Under ProlH05 16, the ime and date are obtained
through 2 call 1o the Miscellaneous Tool Set (see
Apple IfGs Toolbox Keference)

SET BUF Under ProDO5 16, the Memory Manager, rather
than the application, allocates file 'O buffers.

GET_BUF This call is unnecessary under Prol¥25 16 because
the OPEN call returns 2 handle to the file's /O
buller

ONLINE This call is replaced in ProfX0S 16 by the VOLUME
call

Chapter 1: About ProDos 16 1n

New ProDOS 16 system calls

The fellowing operating system calls, not recognized by ProlDO5 8,
are part of ProDos 16;

CLEAF BACKUP BIT (clears one of a file's acoess bits)

CHANGE PATH {changes the pathname of a file within 4
volume)
SET LEVEL (se1s the system file level)
-"E"‘:LEUE.L (returns the system file levelD)
GET DEV_NUM (retumns the device number for 2 named
device)
GET_LAST DEV (returns the number of the last device
accessed)
| FORMAT (formats a disk volume)
GET_MNAME (returns the filename of the curment
application)
GET_BOOT_VOL (returns the name of the volume that
containg ProDOS 16}
GET_VERSION (returns the cusrent PeoDOS 16 version)

These and all cther ProDOS 16 calls are described in detail in
Chapters 9 through 13

Other features

Like ProDOS 8, ProDOS 16 supports block devices only, It does not
support 1/0 operations for the buili-in serial ports, mouse, Apple
Deskiop Bus™, sound generation system, or any other nonblock
device, Applications must access these devices through the device
firmrware or the Apple G5 Toalbox,

Pral®35 8 and ProlX05 16 have identical file structures. Each can

read the other's hiles, buat

1 Prof06 16 load files (ypes $B3 - $BE) cannot be executed
under Prol0O5 8

1 ProDd% B system ffles (ype $FF) or binary files (ype $06)
cannot be executed under ProDOS 16

Part I How ProDdo8 14 Works

The default operating system on the Apple 11GS (afier a cold or warm
restart} can be either ProDdOS 8 or ProDOS 16, depending on the

organization of files on the starup disk. See *System Startup” in
Chapter 5.

Running under ProDOS 8 does not disable memory bevond the
addresses ProDdOS 8 can reach, nor does it disable any other
jilvanced :'-'5.|':||'I|E': 1635 feammres. All SYSIEM FesOUrees 28 3lwavs

available, even though an application itself may make use of only
the *ProfM25 B-standard Apple 11" portion.

Summary of ProDOS 16 features

The following lists summarize the principal features of ProDOS 16

Refer 1o the glossary and to appropriate chapters for definitions and
explanations of werms that may be unfamiliar to vou

In general, ProDOS 14...
is a single-task operating system
supports a hierarchical, ree-structured file system

2 allows device-independent 140 for block devices

ProDOS 16 system calls, ..

I use the J5L instruction and a parameter block
[meturn error status in the A and P registers
O preserve all other CPU registers

1 can be made from 65CB16 native mode or 6502 emulation mode
1 can be made from anywhere in memory

1 €an access paramater blocks that are anywhere in memory

I cin use pointers thal paint anywhere in memory

0 can ransfer data anywhere in memory

Chaptar 1: About ProDos 14 13

14

The ProDOS5 14 file management system...

uses a hierarchical file structure
supports 9 pathname prefixes
allows byte-oriented acoess (o both direciory files and data files

allocates files dynamically and nencontguously on block
devices

supports sparse fikes

provides buffers automatically

supports acoess attributes that enable/disable
O reading

0O wriling

O réfarming
O destroying
& badkip

assigns a system file level 1o open files

1 awlomatically marks files with date and time

uses 2 512-byte block slze

allows volume sizes up to 32 megabytes
allows data file sizes up o 16 megabyies
allows up to 14 volumes on line

allows up 1o B open files

allows 64 characters per pathname
allows fd-character prefixes

allows 15 characters per volume name

1 allows 15 characters per file name

The ProDOS 16 device management system...

supports the ProDROS block device protocol
names each block device

1 allows 15 characters per device name

allows 14 devices on line simullaneously

provides a FORMAT call to initialize disks

Part I: How ProlO5 14 Works

The ProDOS 16 interrupt management system...
1 receives hardware interrupts not handled by firmware
dispatches interrupts o user-provided interrupt handlers

1 allows installation of up (o 16 interropt handlers

For memory management, ProDOS 14...

1 dynamically allocates and releases system buffers (through the
Memory Manager)
can directly access up to 229 bytes (16 megabytes) of memory

T can run with a minkmum of 256K memory

In addition, ProDOS 14...

1 provides a QUIT call to cleanly exil one program and stan
another, with the option of returning later 1o the guitting
program

Chapter 1: About ProDos 14

Chapter 2

ProDOS 16 Files

1]

The largest past of ProDOS 16 is its file management system. This
chapter explains how files are named, how they arc_crcarcd _a.nd
used, and a linle about how they an: organized on disks. It discusses
PraDOs 16 file access and file housekeepring calls.

For move details on file format and organization, see Appendix A

Usi ng files

Filenames
Every ProDOS 16 file, whether it Is a direciory file, data file, or
program file, is identified by a filename. A ProDOS 16 filename
can be up to 15 characters long. Tt must begin with a letter, and may
contain uppercase leners (A-Z), digits {051, and periods ()
Lowercase letters are automatically converied o uppercase. & .
filename must be unigue within its directory. Some examples (laken
from Figure 2-1) are

MEMOS

CHAP11

. FROGAAM

An entire disk is identified by its volume name, which is the
flename of its volume directory, In Figure 2-1, the disk’s volume
name i5 /DISKRE

Part |- How PraDOs 18 Works

Pa!ﬁnumas

A ProDOS 16 pathname is a series of filenames, each preceded by a
stash (/). The first filename in a pathname is the name of a volume
directory. Successive filenames indicate the path, lrom the volume
directory o the file, that ProDOS 16 must follow o find a particular
file, The maximum length for a pathname is 64 characers,
Including slashes. Examples from Figure 2-1 are

Il calls that require you o name a file will accept either a full
pathname or a partial pathname. A partial pathname is a portion
ofa pathname; you can tell that it is not a full pathname because it
doesn't begin with a slash and a volume name. The maximum
length for a partial pathname is 64 characters, including slashes

These partial pathnames are all derved from the sample
pathnames abowe:

FralO5 16 automatically adds a prefix 1o the front of partial
pathnames o form full pathnames. A prefix is 2 pathname that
indicates a directory; it always begins with a slash and a volume
name, Several prefixes are stored internally by ProDOS 16,

For the partial pathnames listed above to indicate the proper files
Lhesir prefixes should be set 1o

KA6/CHRRTS/
BE/
BES

G/MEHOS

respectively, The slashes at the end of these prefives are optional;
however, they are convenient reminders that prefixes indicate
directory files

The maximum length for & prefix is 64 characters. The minimum
length for 2 prefix i5 #ero characters, known as 2 null prefix. You
set and read prefixes using the calls SET PREFIX and
GET_PREFIX.

Chapter 2: ProDOS 14 Fles %

& Note Because both a prefix and a partial pathname can be up
to 64 characters long, it is possibe 1o have a pathname (prefix
plus partial pathname) whose effective length is up to 128
characters,

Prol¥05 16 allows you 1o sct mores than one prefix, and then refier 1o
each prefix by code mumbers, When, as in the a._buw: examples, no
particular prefix number is specified, ProDOS 16 adds the default
prefix 1o the partial pathname you provide. See Chapaer 5 for a
mare complete explanation and examples,

Figure 2-1 fllustrates a hypothetical directory stracure; il coniains
all the files mentioned above, Note that, even though there are two
files mamed FROFIT . 3RD in the volume directory /DISK.BE/,
they are easily distinguished bocause they are in |JiIT--rn_n:
shibdirectories (MEMDS/ and CHARTS /). That is why a full pathname
is necessary o completely specify a file.

PROEN 3D |

=
] SALES M

\ |

Fgure 2-1
Example of a PreDOs 16 file structure

Part I: How ProlOs 16 Works

Creating files

A file is placed on a disk by the CREATE call. When you create a
file, you assign it the following properties

0 A pathname This pathname is 2 unigue path by which the file
can be identified and accessed. This pathname must place the
file within an existing directory.

1 An access byte, The value of this byte determines whether or
not the file can be written to, read from, destroved, or renamed.

0 A file type. This byte indicates 1o other applications the type of
information to be stored in the file, It does not affect, in any way,
the contents of the file.

A storage type. This byte determines the physical format of the
file on the disk. There are only two different formats: one is used
for directory files, the other for non-directory files

When you create a file, the properies listed above are placed on the
disk, along with the current system date and time {called creation
date and creatlon tme), in a format as shown in Appendiz A
Once a file has been created, it remains on the disk until it is deleted
(using the DESTROY call).

To check what the properties for a given file are, use the
GET_FILE_INFO call. To alier its properties, use the
SET_FILE_INFO call To change the file's name, use the
CHANGE _PATH call,

Opening files

Before you can read information from or write information o a file
that has been created, you must use the OPEN call to open the file
for access. When you open a file you specify it by pathname. The
pathname you give must indicate an existing file; the file must be on
a disk mounted in a disk drive.

The OPEN call returns a reference number (ref” rmum) and the
Incation of a bufler (fo_beyffer) 1o be used for transferring data o
and from the file. All subsequent references to the open file must

use its reference number, The file remains open until you wse the
CLOSE call.

Chapter 2: ProDO5 14 Files 21

22

Fach open file's 1/0 buffer is used by the system the entire tme the
file is open: Thus, [0 cORSErve memory space, it is wise 1o keep as
few files open as possible. ProDOS 16 allows 2 maximum of 8 open
files at a time

When you open a file, some of the file's characteristics are placed
into a region of memory called a file control hiock. Several of
these characieristics—the location in memory of the file's buller, a
pointer 1o the end of the file (the EOF), and a pointer 1o the current
positicn in the file (he fie Mark)—are accessible o applications
via ProDOS 16 calls, and may be changed while the file is open

1t is important to be aware of the differences berwveen the file as it

exists on the disk and when it is open in memory, Although some of
the file's characteristics and some of its data may be in memory at

*any given time, the file isell sl resides on the disk. This allows

ProDOS 16 1o manipulate files that are much larger than the
computer's memory cApacity. As an application writes to the file
and changes its characteristics, new data and characleristics are
wiitien to the disk

Tl.'n.a _EIDF and Mark

To aid reading from and writing to files, each open file has one
pointer indicating the end of the file (the EOF), and another
defining the current position in the file (the Mark). Pro[¥25 16
mowves both EOF and Mark automatically when necessary, but an
application program can also move them independently of
ProDHs 16,

The EOF is the number of readable byles in the file. Since the first
byte in a file has number 0, the EGF, when treated as a poiner,
points one position past the last character in the file

When a file is opened, the Mark is set to Indicate the first byte in thie

file. It is automatically moved forward one byte for each byte wrillen

to or read from the Tile. The Mark, then, always indicates the next
byie to be read from the file, or the next byte position in which 1
wrile new data, [t cannol exceed the EOF,

Part I: How ProDOS 14 Waorks

If during a wrile operation the Mark meets the FOF, both the Mark
and the EOF are moved forward one position for every additional
bryte written 1o the file. Thus, adding bytes to the end of the file
automatically advances the EQF to accommodate the new

information. Figure 2-2 illustrates the relationshi
g p between the Mark

(a3 Beginning position

MARK

(b.) After writing or reading two bytes:

P

S MARE

() After writing two more bytes

1

Figure 2-2
Automatic movement of ECF and Mark

An Izppli::umn can place the EOF anywhere, from the current Mark
position o the maximum possible byte position, The Mark |:';m. e

[_ﬂau:_fl anywhere from the first byte in the file 1o the BOF, These two
lunctions can be accomplished using the 38T EOF and SET MARE

calls, The current values of the EOF and the Mark can be o

determined using the GET_EOF and GET MARK calls.

Chapter 2: ProlOS 14 Files 23

24

READ and WRITE calls to ProDOS 16 transfer data between memory
and a file. For both calls, the application must specify three things
The reference number of the file (assigned when the file was
opened).

O The location in memory of a buffer (data buffer) that
contains, or 15 to contain, the ransferred data, Note that this
cannat be the same buffer (io_buffer) whose location was
returned when the file was opened

o ‘The number of bytes to be transfierned

When the request has been carred out, ProD05 16 passes back o
the application the number of bytes that it actually transferred

A read or wrile request stans at the current Mark, and continues wnil
the requested number of bytes has been transferred (or, on a read,
until the end-of-file has been reached). Read requests can also
terminate when a specified character is read. To tum on this feature
and set the character(s) an which reads terminate, use the NEWLINE
call. The newline read mode is typically used for reading lines of
text that are werminated by carriage returns,

& By the way: Meither a READ nor a WRITE call necessarily causes
a disk access. ProDOS 1O buffer for each open file is 1024 byles
in size, and can hold one block (512 bytes) of data; it is only
when a read or write crosses 3 block boundary that a disk acoess
s

Closing and I‘qu.il‘-!.ihg files

When you finish reading from or writing 1o a file, you must wse the
CLOSE call 1o close the file, When you use this call, you specify only
the reference number of the file (assigned when the file was
opencd),

CLOSE writes any unwrilten data from the file's 10 buller 1o the file,
and it updates the file's size in the directoey, if necessary. Then it
frees the 1024-byte buffer space for clther uses and releases the file's
reference number and file contral block. To access the file once
again, you have 1o reopen it

Part I How ProDO3 16 Waorks

Information in the file’s directory, such as the file's size, is normally
updated only when the file is closed. IF the user were [0 press
Control-Reset (rypically halting the current program) while a file is
open, data written (o the file since it was opened could be lost, and
the: infegrity of the disk could be damaged. This can be prevented
by using the FLUSH call

FLUSH, like CLOSE, writes any unwritten data from the fle's 170
bufTer 1o the file, and updates the file's size in the directary,
However, it keeps the file’s buffer space and reference number
active, and allows continued access to the file. In other words, the
fMe stays open. If the user presses Control-Reset while an open but
flushed file is in memory, there is no loss of data and no damage 1o
the disk

Both the CLOSE and FLUSH calls, when used with @ reference
number of 0, normally cause all open files 1o be dosed or Mushed
Specific groups of files can be dosed or Nushed using the sstem file
feved (see next),

ﬁlwals

When a file is opened, it is assigned a level, according to the value
of a specific byte in memory (the system file level. If the file level
i never changed, the CLOSE and FLUSH calls, when wsed with a
reference number of 0, cause all open files 10 be closed or Aushed
But if the level has been changed since the first file was openad,

only thase files opened when the file was greater than or equal (o the
current system file level are dosed or flushed,

The system file level feature may be used, for example, by a

controlling program such 45 4 BASIC interpreler to implement an

EXEC command:

1. The interpreter apens an EXEC program file when the level is
S00.

2. The interpreter then sets the level to, say, $07

W

. The EXEC program opens whatever files it needs,

b

. The EXEC program execules 2 BASIC CLOSE command, o
close all the files it has opened. All files at or above level $07 ame
closed, but the EXEC file itsell remains open

You assign a value to the system file level with 2 SET LEVEL call:
you obiain the current value by making a GET LEVEL call

Chopter 2: ProDOS 14 Flles 25

24

Part |

File format and organization

This ponion of the chapter describes in general terms the
organization of files on a disk. For more detailed information, see
Appendix A,

In general, structure refers in this manual o the hisrarchical
relatinnships among files—directories, subdirectories, and files
Format refers to the arrangement of information (such as headers,
pointers and data) within a fle. Cvganization refers o the manner
in which a single file is stored on disk, in terms of individual 5132-
byte hlocks. The three concepts are separate but interrelated. For
example, because of ProDOS 16° hierarchical file struchire, pan of
the format of a directory file includes pointers to the [iles within

sthat directory. Also, because files are orpanized a8 noNCONLGUOWLS

blocks on disk, part of the format of every file larger than one block
includes pointers to other blocks.

Directory files and standard files

Every ProDOS 16 file is a named, ordered sequence of bytes that
can be read from, and to which the mles of Mark and EOF apply.
However, there are two types of [es: directory files and standard
files. Directory files are special files that describe and point to
other files on the disk. They may be read from, but not written to
{except by ProDOS 16), All nondirectory files are standard files
Thr_"!.- may be read Froem and wrilten o

A directory file contains a number of similar elements, called
eniries. The first entry in a directory [ile is the header entry: it holds
the name and other properties (Such as the number of files stored in
that directory) of the directary file, Each subsequent entry in the file
deseribes and points (o some other file on the disk Figure 2-3 shows
the format of a directory file.

The files described and pointed 1o by the entries in a directory file
can be standard files or cther directory files

An application does not need 1o know the details of directory
format to access files with known names. Only operaticons on
unknown files (such as listing the files in a directory) requine the
application to examine a directory's entries. For such tasks, refer to
Appendix A

How ProDOS 16 Works

Standard files have no such predefined internal format: the
armangement of the data depends on the specific file type.

Directary File Standard Flles of
Dirsstary Files
Haodar Enbry FilE A
" FeEnty _'_._.___,_.---F"""'
(Fim &)
Fie 8
|

Figure 2-3
Directory file format

File organization

Because directory files are generally smaller than standard files,
and because they are sequentially accessed, ProDOS 16 uses a
simpler form of storage for directory files than it does for standard
files. Both types of files are stored as a set of 512-byte blocks, but the
way in which the blocks are amanged on the disk differs

A directory file is a linked list of blocks; each block in a directory file
contiins 1 pointer to the next block in the directory file as well a5 2
pointer (0 the previows block in the directory, Figure 2-4 illustrates
this organizalion

Chapter 2: Prol<d5 14 Files a7

[hast
BHockl

Block

]
0
5

Figure 2-4
Block organization of a directony fle

Diata files, on the other hand, are often quite large, and their
contents may be randomly accessed. It would be very slow 1o access
such large files if they were organized sequentially. Instead, ProDOS
16 stores standard files using a tree organization, The largest
pessible standard file has a master index block that points 1o 128
index blocks. Each index block points to 256 data blocks and each
data block can hold 512 bytes of data. The block organization of the
fargest possible standard fle is shown in Figure 2-5,

Block

55

Figure 2-5
Bleck ergonizaotion of a standard file

Most standard fles do ot have this exact organizaton. ProDOS 16
only writes 2 subset of this form to the file, depending on the
amount of data written. This technigque produces three distinct

ms of standard file: seedling, sapling, and tree [ies. All Lhree are
Appendix A

explained in

28 Part I: How ProDO5 14 Works Chapter 2: ProDOS 14 Flles)

30

Impariant

Sparse files

In maost instances a program writes data sequentially into a file. But
by writing data, moving the EOF and Mark, and then writing more
data, 2 program can also write nonsequential data to a file. For
example, 3 program can open a file, write a few characters of data,
and then move the EOF and Mark (thereby making the file bigger)
by an arhitrary amount before writing a few more bytes of daa
Cinly those blocks that contain nonzero information are actually
albocated for the file, so il may take up as few as three blocks on the
disk (a total of 1536 bytes), However, as many bytes as are specified
by the value of EOF {up 1o 16 megabyies) can potentially be read
from iL Such files are known as sparse fles, Sparse files are
explained in more detail in Appendix A.

In transfemng sparse files, the foct that more data can be read
from the file than octualy resides on the disk can couse a
problam, Suppose thot you wera trying to copy a sparse fie
from one disk to another, If you were fo read data from one file
and write It to another, the new fle would be much larges than
the oniginal because dota that 8 not actually on the disk can
pa recd from the file. Thus If your application ks golng 1o transfer
sporse fles, you must use the information In Appendix A fo
detarmine which blocks should be coplad, and which should
nat,

The file wility programs supplied with the Apple 0G5 automatically
preserve the structure of sparse files on a copy

Part I: How ProlO5 16 Works

EEmMrS

ProDOS 16 and Apple llcs
Memory

3

32

Strictly speaking, memory management s separate from the
operating system in the Apple 1G5, This chapter shows how
Prold8 16 uses memory and how it interacts with the Memaory
Manager.

Apple lics n;*amurf c?n_ﬁgurmlons

The Apple 1G5 microprocessor i capable of directly addressing 16
megabytes (16Mb) of memory. As shipped, the basic memory
configuration for Apple [1GS is 256 kilobytes (256K) of RAM and
128K of ROM, arranged within the 16Mb memory space a5 shown in
Figure 3-1

SED SFE SFF

Figura 3-1
Apple llss mamory map

Part | How ProDOos 16 Works

The total memory space is divided into 256 hanks of 64K bytes each
(see Table 3-1). Banks $00 and $01 are used for system software,
ProDOS 16 applications, and are the only memaory space occupied
by standard-Apple I programs running under ProDOS 8. Banks
SEG and $E1 are used principally for high-resolution video display,
additional system software, and RAM-based tools. Specialized
areas of RAM in these banks include 1/0 space, bank-swirched
memary, and display buffers in locations consistent with standard
Apple I memory configurations (see “Special Memory and
Shadowing," below), Banks $FF and $FE are ROM; they contain
firmware and ROM-based rools. For more detailed pictures of
Apple 1G5 Memory, see Technical mtrduction to the Apple GS,
Apple I1G8 Hardware Reference and Apple IS8 Firmware
Referenice.

Table 3-1

Appla Ics memory unifs

Unit Sire

nibble 4 bits (one-half byte)

byie B bits

word 2 bytes

long ward 4 bytes

page 255 byles

hlock 512 bytes (Tor disk storage)
bank 65,5360 bytes (256 pages)

With & 1-megabyte Apple IIGS Memaory Expansion Card, 16
additional banks of memory are made available: they are
numbered sequentially, from $02 10 $11. Expansion banks have
none of the spedalized memory areas shown for banks $00-501 and
$E0-3E1—all 64K bytes in each bank are available for applications.

Chapter 3: ProDOS 16 and Apple lles Memory 3

34

special memory and shadowing

For running standard Apple I software, the Apple 11GS memaory
configuration is set 5o that banks 300 and 301 are identical to the
Main and Auxiliary RAM and ROM on an Apple [Ic or an Apple lle
with extended BO-column card See Apple Ifc Technical Reference
Manual or Apple [fe Technical Reference Manual for details.
Because they are used by standard Apple 11 programs, both banks
£00 and $01, as well as the display pages in banks $E0 and $E1, ame
called special memory; there are restrictions on the placement of
cerain types of code in special memory, For example, any sysiem
saftware that must remain active in the standard Apple 11
configuration cannot be put in special memory. See “Memoary
Manager® in Apple UGS Toolbox Reference for more details

Shadowing is the term used to deseribe a process whereby any
changes made 10 one part of the Apple IIGS memory ane
automatically and simulanecusly made in another part. Shadowing
is necesssary because standard Apple 11 programs can direcly
access banks 500 and $01 anly, but all the fixed locations and data
structures needed by those programs are maintained in banks $80
and $E1 (see Appie [165 Hardware Reference). When the proper
shadowing is on, an application may, for example, update a display
location in bank $00; that information is automatically shadowed to
bank $E0, from where the video display is actually controlled

PraDO5 16 and the System Loader together occupy nearly all
adddresses from $DO00 through $FFFF in bath banks 500 and $01
This is the same memory space that ProDOS 8 ocouples ina
standard Apple IL: all of the language card area (addresses above
SD000Y, including most of bank-swilched memory.

In addition, Prol¥05 16 reserves (through the Memory Manager)
approximately 107K bytes just below $C000 in bank $00 (in the
region normally occupied by BASIC.SYSTEM in a standard Apple
11}, for 140 bulTers, ProDOS 8 interface tables, and other code

The part of ProDdOS 16 that controls loading of both ProDOS 16 and
ProDd0s B programs Is located in pans of bank-switched memory in
bariks $E0 and $E1. Other system software occupies most of the res
of the kinguage card areas of banks $E0 and $E1.

Part I How PraDCS 146 Works

2

None of these reserved memory areas is available for use by
applications

h

SED SET |

J SR (ProDid 14
]

000K} (Svsiam Laader)

Figure 3-2
PraDOS 14 and System Loader mernary mop

ErW points and fixed locations

Because most Apple 11GS memory blocks are movable and under
the control of the Memory Manager (see next section), there are
very few fixed entry points available o applications p-n_:g:?.l'rm]l:ri
References to fixed entry points in RAM are strongly dist[hjrﬁﬂl.‘l.‘.
since they are inconsistent with flexible memory management and
are sure to cause compatibility problems in future versions of the
Apple IG5, Informational system calls and referencing by handles

tsee “Pointers and Handles” in this chapter) should take the place
of access to flxed entry points. F

The sing!f.- supported System Loader entry point is $E1 0000, That
location is the entry peint for all Apple 1165 ool calls,

The ;:ngk suppored ProDOS 16 entry point is $E1 00AB. That
location [s the entry point for all PraDOS 16 calls. In addition,
PraDOS 16 supports a few other fixed locations in s bank SFJI
vector space. Table 3-2 lists them. .

Chaopter 3: PFroDOS 16 and Apple lss Memony as

Fart I

Table 3-2
ProDs 14 fied localions

Address range Elp|!l|"!ﬂ”ﬂ!|-

Entry vector for all Prolx05 16
sysiem calls

$E1 D0AB - $E1 00AB

LE1 00OAC - $E1 00B9 (reserved)

5E1 O0BA — SE1 ODBR Two null bytes (guaraniead to be
FET0R)

$E1 00BC 05_KIND byte—indicates the

currently running operating system
500 = ProDO5 8
501 = PralO5 10

$E1 QOBD 05_BoOT byte—indicates the
r operating system that was initially
booted
500 = Prolx05 B
501 = PraDO5 16
Flag word. The bits are defined as
follows:
bit 15 (ProDO5 busy Nagh
0 = ProD}% 16 5 not busy
1 = ProDOS 16 is busy
Hits 14 - O
{reserved)

$E1 O0RE - SE1 O0BF

The ProDOS busy flag is explained under “Making Operating
Systern Calls During Interrupts,” in Chapter 7.

& Note ProDOS 16 does sof suppor the ProDOS 8 global page or
any other fxed locations used by ProDOS 8

Me mory management

PraDOS 16 itself does no memory management. All :lf.lf‘.u:al_iurl and
deallocation of memory in the Apple 11GS is performed by the
Memaory Manager. The Memory Manager is an Apple 11G5 wal
set, Tor a complete description of its functions, see Apple (IGS
Toolbox Reference

Hen ProDOs 16 Works

Table 3-3
Memory block atfributes

The Memory Ma nogur-

The Memory Manager is a ROM-resident Apple 1168 toal set that
contrals the allocation, deallocation, and repositioning of
memory blods in the Apple 11GS, Tt works dosely with ProDOS 16
and the System Loader to provide the needed memory spaces for
loading programs and data and for providing buffers for
input/output. All Apple IG5 software, including the System Loader
and ProDOS 16, must obtain needed memory space by making
requests (calls) to the Memory Manager,

The Memory Manager keeps track of how much memory is free and
what pans are allocated to whom. Memory is allocated in blocks of
arbitrary length; each block possesses several attributes that
descrile how the Memory Manager may modify it (such as moving
it or deleting it), and how it must be aligned in memory (for
example, on a page boundary). Table 3.3 lists the Memory
Manager attributes that a memory block has

Aftribute

Explanation

fixed (ves/no)

fiwed address (ves/no)
fixed bank {ves/no)

bank-boundary limited Cves/ng)

special memory not usable (yvesfno)

page-aligned (ves/nod
purge level (0o 3)

locked (yes/nod

Must the block remain at the same location in
maemory?

Musst it be at a specific address?
Must it be in a particular memory bank?

It is prohibited from extending scross a bank
boundary?

Is it prohibited from residing in spectal memary
{banks 300, $01, and parts of banks $E0. $E77?

Must it be aligned o a page boundarny?
Can it be purged? If 50, with what priorin?

Is the block locked (temporarily fixed and
unpurgeable)?

Each block is also defined by it's User ID, a code number that
shows what program owns iL

Chopter 3: ProDOS 14 and Apple llss Mamaory a7

Besides creating and deleting memory blocks, the Memary
Manager moves biocks when necessary consolidate free

memoary. When i compacts memory in this way, it of course can
move anly thase blocks that needn't be fixed in location Therefore
as many memory blocks as possible should be movable (not fixed),
if the Memory Manager i3 (o be efficient in compaction

When 3 memery block is no longer needed, the memory Manager
gither purges it (deletes its contents bt maintains it existence) or
disposes it (completely removes it from memaory)

Fointers and handies

T acoess an entry point in a movable biock, an application cannct
use a simple pointer, since the Memory Manager may move the
block and change the entry point's address. Instead, each time the
Memory Manager allocates 3 memory block, it returns 1o the
requesting application a handle referencing that block.

A handle is 3 pointer 1o a pointer; it is the address of a fixed
{nonmovable) location, called the master pointer, thal contiins
the address of the block, If the Memory Manager changes the
location of the block, it updates the address in the master pointer;
the value of the handle itself is not changed. Thus the application
can continue to access the block using the handle, no mater how
aften the block s moved in memory. Figure 3-3 [lustrates the
difference between a pointer and a handle.

If 2 block will always be fixed in memory (locked or unmaovable), it
can be referenced by a poimer instead of by its handle. To obtain a
painter to & particular block or location, an application can
dereference the block's handle, The application reads the
address stored in the location pointed to by the handle—that
address is the pointer 1o the block. OF course, if the block is ever
moved that pointer is no longer valid

Pro[0% 16 and the System Loader use both pointers and handles 1o
reference memory locations. Pointers and handles must be at leas
three bytes long 1o access the full mnge of Apple IG5 memory
However, all pointers and handles used as parameters by Prol3OS
16 are four bytes long, for ease of manipulation in the 16-bit
registers of the 65C816 microprocessor

Part | How ProDOS5 16 Works

a. Painden Merany Siock

Walue of pointar =
Worling aodieéss of mamony bioci

Mol s Poindr 1

b. Hondle: p
Vg [H
vl of honde = H i
o e i i
~ 1l

— T I
> I |
Volue of moster poinfer =
curent shafing oddhess of
memony Diock

Figure 3-3
Palnters and handles

How an application obtains memory

Normal memaory allocation and deallocation is completely
aulomatic, as far as applications are concerned. When an
application makes a ProDOS 16 call that requires allocation of
memory {such as opening a flle or writing from a file to 3 memory
locaticn), ProDOS 16 fist obtains any needed memory blocks from
the Memory Manager and then performs its tasks. Likewise, the
System Loader requests any needed memory either disectly or
indirectly (through Pro[0S 16 calls) from the Memory Manager.
Conversely, when an application informs the operating system thar
it no longer needs memary, that information is passed on 1o the
Memory Manager which in turn frees thar application’s allocated
memaory

Chapter 3: ProDOS 146 ond Apple lkes Mamony a9

Any other memaory that an application needs for s own purposes
must be requested directly from the Memary Manager. The shaded
arcas in Figure 3-3 show which parts of the Apple IG5 memory can
be allocated through requests 1o the Memory Manager.
Applications for Apple [IGS should avoid requesting absolute
(Fixed-address) blocks, Chaplers f and 16 of this manual discuss
program memary management further; see also Programmers
Introdisction 1o the Apple 16§ and Apple TGS Toolbox Reference.

. 500 501 502 57F SEQ

:’JE‘F ,|"|||!'|!I| |!'||'||| ‘ || =
| it
. _‘,_LlJLl'“,.“ _|I',’ | i ..

Fgure 3-4
Mermeary alocatable through the Memorny Manager

Part |: How ProDOS 16 Works

Chapter 4

Devices

ProDOS 16 and External

41

42

An external device is a piece of equipment that transfers .
information to or from the Apple G& Disk drives, printers, mice,
and joysticks are external devices. The keyboard and 5CTEEN Arc ;_;Isn
considered external devices, An input device transfers information
to the computer, an cuitt device transfers information from the
computer, and an inputoupul device transfers information both

wilys.
This chapter discusses how ProDOS 16 provides an interface
between applications and cenain extenal devices.

Block devices

* A hlock device reads and writes information in muliples of one

block of charactess (512 bytes; see Table 3-1) at a time.
Furthermaore, it is 4 random-geeess devico—il can access any block
on demand, without having 1o scan through the preceding or
succeeding blocks. Block devices are usually used for storage and
retrieval of information, and are usually input/output devices, Disk
drives are block devices.

ProDO5 16 suppons access to block devices. That is, you may read
from or write to a block device by making ProDOS 16 calls. In
addition to READ, WRITE, and the ather file calls described in
Chapter 2, ProDOS 16 also provides five “lower-Jevel” device- :
access calls, These calls allow you to access information on a block |
device without considering what files the information is in. The calls |
are

GET DEV_NUM returns the device number associated witha |

o particular named device or onling volume

GET LAST DEV remums the device number of the last device
- accessed through ProDOS 18

READ BLOCK reads one block (512 byies) of data from a
- specified device

WRITE_ BLOCK writes one block (512 bytes) of data o a
specified deviee

FORMAT formats {initializes) a volume in a device

Part | HowProDOSs 146 Works

A block device generally requires a devlce driver to translate
ProDOS 16% logical block device mode] into the tracks and
sectors by which information is actually stored on the physical
device, The device driver may be circuitry within the disk drive
itself (UniDisk™ 3.5), it may be included as part of ProDOS 16
(Disk 1%, or it may be on a separate card in an expansion shoL
This manual does not discuss device drivers,

& Note on RAM disks: RAM disks are internal software constructs
that the operating system treats like external devices. Although
ProDOS 16 provides no particular support for RAM disks, any
RAM disk that behaves like a block device In all respects will be
supparted just as if it were an external device,

Character d:\;ices

A character device reads or writes a stream of characters in order,
ane at a time. It is a sequential-access device—It cannot access
any position in a stream without first accessing all previous
positions, It can neither skip ahead nor go back 1o a previous
character. Characler devices are usually used to pass information o
and from a user or another computer; some are input devices,
some are outpul devices, and some are input/output devices. The
ﬁ?hmrd. screen, printer and communications port are chamcter
SMI0ES

Current versions of ProDOS 16 do not suppart character devices,
that is, you cannot access character devices through Prol0OS 16
calls. Consult the appropriate firmware or tools documentation,
such as Apple [IGS Firmware Reference o Apple IG5 Toolbax
Reference, Tor instractions on how to make calls 1o the particular
device you wish 1o wse,

Accessing devices

T_;'nc!cr PraDOS 16, you can aceess block devices through their
device numbers, device names, or the volume names of the
volumes mounted on them.

Chaopter 4: ProDOS 14 and Extemal Devices 43

Named devices

ProD¥0S 16 permils block devices o have assigned names This
ability is a convenlence for users, because they will no longer have
1o know the volume name (0 access a disk.

However, ProD0S 16's support for named devices is limited
Device rames may be used only in the VOLUME, GET_DEV_NUM,
and FORMAT calls. Other calls that access devices require either a
volume mame of the device number retumed by the GET_DEV_HUM
or GET_LAST_DEV call,

Devices are named according 1o a built-in convention; assigned
names may not be changed. The naming convention is as follows

Device Name
Any block device Dn
where n= 3 1-digit or 2-digit decimal number

(assigned consecutively)

Last device accessed

An application may ask ProDOs 16 for the identity of the last block
device accessed. The last device accessed is defined here as the
device to which the most recent call involving a disk read or write
{including a block read or write) was directed.

When an application makes the GET_LAST_DEV call, ProDos 16
retumns the device number of the last Block device accessed. The
application can then use that information as input & subsequent
device calls

Block read and block wr:rl_a_

ProDOS 16 provides two device-access calls analogous to the ik
access calls READ and WRITE, These calls, RERD BLOCE and
WRITE BLOCK, allow you to transfer information 1o and from 4
volume on a block device regardless of what files the volume
COnains,

Part |: HowProDOSs 164 Works

The device number of a device (returned by GET_DEV_NUM) is 2
required input for the block read and write calls. The block read and
write calls are powesful, but are not needed by most

applications—the filing calls described in Chapter 2 are sufficien
for normal disk 140,

fomuﬂing adisk

Your application can format (initialize) a disk in a device through
the Prol08 16 FORMAT call, The call requires both a device name
and a volume name as input. The disk in the specified device is
formatted and given the specified volume name

Thesother required input to the FORMAT call is the file system 1D, 11
specifies the dass of operating system for which the disk is o be
formatted (such as DOS, ProDOS, or Pascal). Under currem
versions of ProDOS 16, however, the FORMAT call can formar disks
for the ProDd05/504 file system only (file svstem 1D = 1.

Number of online devices

Prol}OS 16 suppons up 1o 14 active devices at & ime. The Apple
0G5 normally accepts wp to 4 deviees connected 1o s disk part
(Smanport) and two devices per expansion slot (slots 1 through 73.
It is possible, however, 1o have up to 4 devices on (3 Smartport card
in) slot 5. Nevertheless, the total number of devices on line still
cannod excesd 14,

Device search at startup

When ProDOS 16 boots, it performs a device search to identify all
built-in pseudo-slot ROMs (internal ROMs) and all real physical
slat ROMs (card ROMs). Every block devies found is incorporated
into ProDOS 16' list of devices, and assigned a device number
(dev_num) and device name (dev_mame).

Chapter 4: ProDO5 14 and Exfernal Deviceas 45

% MNate; Control Panel settings determine whether internal ROM
or card ROM is aclive for each slot. ProDO5S 16 cannot
simultanecusly support both internal and external devices with
the same slot mamber

In general, the device search proceeds from highest-numbered
slots downward. For example, a disk drive in siot 7 drive 1 will
be device number 1; another drive in slot 7 drive 2 will then be
device 2, and on downward through all the slos

SmartPort (slot 5°s internal ROM and diskport) is a special case
o 4 devices may be connected to SmartPort. However, because
ProDO5 16 suppons only 2 devices per slat, the third and fourh
devices ane treated as if they were in slot 2, Despite the mapping of
devices 3 and 4 into slot 2, however, all deviess connected 1o
*SmartPort are given consecutive numbers. Table 4-1 shown the
relaticnships.

p

Table 4-1
smartPort number, siot number, and device number
asslgnments

smartPart no.t slof and drive davice numbar
1 slot 5 drive 1 r

2 slot § drive 2 n+l

3 slot 2 drive 1 n+2

4 slot 2 drive 2 ey

t emanfaort device numbser 1 ts connected directly to Smanfort
Subsequent devices are conected in daisy-chain fashion to the preceding
ones, so that device numbser 4 is the fanhest from SmanPon

Apple Disk 1T and other related 5.25-inch disk drives are another
special case, Because of the relatively long Ume required 1o access 3
Disk I drive and to determing whether a disk is present in it, Disk 11

drives are given the highest device numbers on the system. That way

they will be searched last in any scan of online devices

HowProDOS 10 Works

Volume control blocks

Far each device with nonremovable media (such as a hard disk)
found at boot time, a volume control block (VCB) is created in
memory. The VOB keeps track of the characteristics of that online
volume. For other devices (such as Moppy disk drives) found at boot
time, VCB's are created as files are opened on the volumes in those
devices, A maximum of eight VCB's may exist at any one lme; if
you try to open a file on a device whose volume presently has no
open files, and if there are already eight VOB entries, error $55
(VOB table full} s returned. Thus, even though there may be up to
14 devices connecled Lo your system, only eight (at most) can be
active (have open files) at any one moment.

Interrupt hunElIing

On the Apple 1IGS, imerrupts may be handled at either the firmware
ar the software level. The built-in interrupt handers are in firmwae
(see Afple o8 Firmware Reference); user-installed intercupt
handlers are softeare and may be installed through ProDOS 16

When the Apple [IGS detects an intecrupt that is to be handled
through ProldO05 16, it dispatches execution through the intermupt
vector at 300 03FE (page 3 in bank zero). At this point the
MICFOPrOCessor IS running in emulation mode, using the standard
cock speed and B-bit registers. The vector at $00 03FE has only two
address bytes; in order to allow access 1o all of Apple 1G5 memory,
it points to another bank zero location. The vector in that location
then passes control (o the ProDOS 16 interrupt dispatcher, The
interrupl dispatcher switches the processor (0 full native mode
(including higher clock speed) and then polls the user-installed
imerrupt handlers,

Figure 4-1 is a simplified picture of what happens when a device
Benerates an interrupt that is handled through a ProDOS 16
intermupt handler.

Chapter 4: PraDO5 14 and External Devices 47

Biiit-in
rharept Honder

v

- "_fV:l
wars Indgrmunl Vaecior) jo Prola06 14
o 500 0 arupt
e b ProDeCxs 183 Dspat P

Fol aoch handhar In sequeanoe

clomed Imemnunt totol gnor —

war-nstalied
handtar

Hondlal Processas Inemap!

14 Irfemuot Dapatcher |
It e PO e ——

Figure 4-1
intermupt randiing through ProDOS 16

PraDOs 16 supports up 1o 16 user-installed interrupt handlers,
When an interrupt occwrs that is not handled by firmware, ProDOS
16 transfers control to each handler successively until cne of them
claims it. There is no grouping of nlerrups into classes; thels
pricrity rankings are reflected only by the order in which they are
polled

If you write an ntermapt-handling routine, 1o make i aFch wious st
fnstall it with the ALLOC_INTERRUPT call; to remove If, you must
use the DEALLOC. INTERRUET call. Be sure to cnable the hardware
generating the mL.l..-:mm only afferthe routing to handle it Is
allocated: likewise, disable the hardware before the routine is
deallocated. See Chapter 7 for further detalls on writing and
installing interrupt handlers

4R Part |: HowProDOSs 16 Works

R ET————.

=]

Unclaimed interrupts

An unclaimed interrit is defined as the condition in which the
hardware Interrupt Request Line (IRCY) is active (being pulled low),
indicating that an interrupt-producing device needs anention, bt
none of the installed interrupt handlers claims responsibility for the
interrupt, When an interrupt oocurs and ProDOS 16 can find no
handler to claim it, it assumes that a serious hardware error has
occurred. It ksues a fatal error message 10 the System Failure
Manager (see Apple (IG5 Toolbox Reference), and stops
processing the current application, Processing cannot resume until
the user reboots the system

Chapter 4: ProDOS 16 and External Devices 43

ProDOS 16 is one of the many components that make up the Apple
11G5 operating environment, the overall hardware and software
sefling within which Apple 1165 application programs run. This
chapter describes how ProDOS 16 functions in that environment

ProDOS 16 and the Operﬂ" ng and how it relates (o the other components
Environment

Apple liGs system disks

An Apple 1165 system disk is a disk conaining the system sofiware
needed o run any application you wish to execute. Most system
disks contain one or both operating systems (ProDOS 16 and
ProDOS 8), the System Loader, RAM-based ool sets, RAM patches

r ROM-based tool sels, fonts, desk accessores, boot-time
initinlization programs, and possibly one or more applications.

‘There are two basic types of system disks: compilete system disks and
application system disks. A complete system disk has a Rall set of
Apple 11GS system software, as listed in table 5-1, It 15 a resource
poal from which application system disks can be constructed. An
application system disk has one or more application programs and
only the specific system software it needs 1o run the applicationis)
For example, 2 woed processor system disk may include a large
selection of fonts, whereas a spreadshect system disk may have only
a few fonts,

Sofiware developers may creale application system disks for their
programs. Users may also create application system disks, pethaps
by combining several individual application disks into a mult
application system disk, Apant from the essential files listed in table
5-2, there 5 no single set of required contents for application
syslem disks

amphm system EisTr.

Every Apple 11GS user (and developer) needs al least one complete
system disk. It {5 2 pool of system softease resources, and may
contain files missing from any of the available applicalion system
disks. Table 51 lists the contents of a complels system disk.

51
52 Part 1; How ProDOS 16 Works

Table 5-1

Contents of a complete Apple lles system disk

Directary/File Description
FRODOS a routine that loads the proper operaling system and seleds an application,
both at boot time and whenever an application quits
S¥YSTEM/ a subdirectory containing the following fles:
PB ProD05 B operating system
Pls Prol¥25 16 operating system and Apple 1G5 System Loader
START typically & program selector
LIBS/ a subdirectory containing the standard system libraries
TOOLS/ a subdirectory containing all RAM-based tools
FONTS/ a subdirectory containing all fonts
DESK,ACCS/ a subdirectory containing all desk accessories
SYSTEM.5ETUR/

TOOL.SETUP

BASIC,SYSTEM

i subdirectory containing system initalization programs

2 load file containing patches (o0 ROM and a program to install them. This is
the only required file in the SYSTEM. SETUR/ subdirectory; it is executed
before any others that may be in the subdirectory.

The Applesoft BASIC system interface program

The complete system disk is an B00K byte, double-sided 3.5-inch
diskette; the required files will not fit on a 140K, single-sided 5.25-
inch diskette,

When you boot a complete system disk, it executes the file
SYSTEM/START. From the START file, you may choose to call

Applesoft BASIC, the only application program available on the
disk,

The SYSTEM.SETUP/ subdirectory

The SYSTEM. SETUP/ subdirectory may contain several different

types of files, all of which need to be loaded and initialized at boot

time, They include the following:

® The file TOOLSETUP: This file must always be present; it is
executed before any others in SYSTEM, SETUR/, TOOL, SETUP
installs and initializes any RAM patches to ROM-based ool sets.
Afler TOOL. SETUP is finished, PraDOS 16 lnads and execules
the remaining fles in the 5¥STEM. SETUP/ subdireciory, which
may belong 1o any of the categories listed below,

Chapter 5: ProDOS 14 and the Operafing Ernwironment 53

s Permanent initialization files (Aletype $8B6): These files are
loaded and executed just like standard applications (rype $B3),
but they are not shut down when finished. They also must have
cenain characleristics:

1. They must be loaded in non-special memory.

2. They cannot permanently allocate any stack/direct-page
space,

3. They must terminate with an RTL (Reum from subroutine
Long) rather than a QUIT.

® Temporary Initlalization files (type $B7): These files arc
loaded and executed just like standard applications (type $B3),
and they are shut down when finished. They must terminate with
an RTL mther than a QUIT.

& New desk accessories (type $B8): These files are loaded but
not executed. They must be in non-spedial memory.

s Classic desk acoessories (type $B9): These files are loaded bl
not executed. They must be in non-special memory.

Application system disks

Fach application program or group of related programs comes on
its own application system disk. The disk has all of the system fles
needed 1o run thar application, but it may not have all the files
present on a comphete system disk. Different applications may have
diffierent system files on their application system disks.

For example, the Pm00OS 16 Exerciser disk, included with this
manual, is an application system disk. It contains all the system files
listed above, plus the file EXERCTSER {the exerciser itsell)

Table 5-2 shows which files must be present on all application
system disks, and which fles are needed only for particular .
applications. In some very restricted instances, it may be]::u)§5|blr.'
to fit an application and its required system files onlo a 5.25-inch
(140K} diskette; most applications, however, require an BO0K
diskene

Part 1: How ProDo5 14 Works

Toble 5-2

EYSTEM. SETUR/
TOOL.SETUP

BASIC.SYSTEM

{required if the program selector is to be used)
(required if system library foutines are needed)
trequired if the application needs RAM-based tools)
(required if the application needs fonts) .
(required if desk accessories are (o be provided)
required

required

{required if the application is wrigten in Applesall BASIC)
The files PRODOS, PR and P16 all have version numbers.
Whenevar It loads an operating system (at startup or when
launching an application), PRODOS chacks the P8 or P14
varsion numbar against its own, If they do not mateh, itis o

fatal emor. Be careful not to construct an application system
disk using Incompaotible vesions of PRODOS, PA and PLE

System startup -

Diisk blocks 0 and 1 on an Apple 1G5 system disk eontain the starup
(boot) code, They are identical 1o the boot blocks on st
Apple 11 system disks (ProDOS 8 system disks). This al
8 system disks 1o boot on an Apple 1G5, and it also means that the
initial part of the ProDO8 16 boatstrap procedure is identical to that
[or Prolx0s5 8

Chapter 5 PreDOS 14 and the Operating Enviranment 55

Required contents of an Apple lies oppllcation systerm disk BQO" Inirlalizﬁnn o N
Drectory /File Required, (Required N..) Figure 5-1 shows the boot initialization procedure. First, the baot
e firmware in BOM reads the boot code (blocks 0 and 1) inta memory
required and executes it, For a system disk with a volume name /v,
required 1. The boot code scarches the disk’s volume directory for the fist
(recuired if the application is ProDOS 8-based) file named /V/PRODOS with the [e type 5FF
required

21 the fle is found, it is loaded and execuied at location $2000 of
bank S00

From this point on, an Apple 1G5 system disk behaves differently
from a standard Apple II system disk. On a standard Apple 11 sysiem
disk, the file named PRODOS is the ProDOS 8 operating system. On
an Apple IG5 system disk, however, this PRODOS file is not the
operating system itself; it is an operating system loader and
application selector. When it recelves control from the boot code,
/V/PRODOS pedorms the following tasks (see also Figure 5-13
3. It relocates the par of itself named POUIT (0 an arcd in memory
where FQUIT will reside permanently. PQUIT contains the
code required 10 terminate one program and start another
{either ProDO5 B or ProDOS 16 application)

4. /v/PRODOS loads the ProDOS 16 operating system and Apple
NGs System Loader (file /v/SYSTEM/FP16)

5. /v/PRODOS performs any necessary boot initalization of the
systermn, by executing the files in the subdirectory
/V/SYSTEM/SYSTEM, SETUR/, If there is a file named
TOOL. SETUF in that subdirectory, it Is executed first—it loads
RAM-based tools and BAM patches to ROM-based tools.
Every file in the subdirectory /V/SYSTEM/5¥YSTEM. SETUR/
must be an Apple 11GS load file of type $B6, $B7, SBE, or SED
Thess file types are described under “The SYSTEM . SETUR/
Subdirectory,” earlier in this chapter. After execuling
TOOL.SETUR, /v/PRODOS loads and execules, in turn, every
other file that it finds in the subdirectory

Part 1: How ProDOS 16 \Works

Powar On
Armasate Mook initialzation |
expCUte +

| Bood Firmriw

n [

=i]

* Escat Toiuns

Boof Bloeks
cblocha 0 ored 1)

‘Theck Zafup Davica

* Boof fodura

fia ngmed —‘LNAL-.E T2 LOAD PRODOS

PROIDOE
‘__||

m Appha NG5 a stoncovd Appis (1

k)

] I*r Yo0F § Systam Digic) |

Thes file PROIDOS i ProDOHs A

b pesfamms its own initialzation
and bings up o PoDOS 8
vyrlam progam—iee
ProQ05 § Reference

visvsTEmserup
Executicn retuens 1o PRODOS

f _
¥ Dask Accessonas

W0 Frogram Seleciion” (Figune 5-2)

Figure 5-1
Boot infiolization sequence

Chapter 5: ProDO5 16 and the Operating Environment

57

Startup program selection

6. Now /V/PRODOS selects (determines the pathname of) the
system program or application to mun. Figure 5-2 shows this
procedure.

a. Tt first searches for a type $B3 file named /V/SYSTEM/START.
Typically, that file is 2 program selector, but it could be any
Apple 1G5 application. If START is found, it is selected,

b. If there s no START file, /V/PRODOS searches the boat
volume directory for a file that is either one of the following:

a ProDO8 8 system program (type $FF) with the flename
extension . S¥YSTEM

0 & ProDOS 16 application (type $B3) with the filename
extension S¥YS16

Whichever is found first is selected

@ Nofe: If a ProDOS B sysiem program is found first, but the
ProDOS B operating sysiem (file /v/SYSTEM/PE] {5 not on the
system disk, /V/PRODOS will then search for and select the firat
ProDOS 16 application (ProDOS 16 is always on the system
disk)
c. If /v/PRODOS cannot find a file to execue (for example, if
there is no START file and there are no ProDOS 8 or ProD0S
16 applications), it will bring up an interactive routine that
prompts the user for the filepame of an application to load
Finally, /v/PRODOS passes control 1o an entry point in BOUTIT It
{s POUIT, not /V/PRODOS, that actually loads the selected
program. The next section describes that procedure

& Naote: PRODOS will write an error messsage to the screen if you
try o boot it on an Apple 1T computer other than an Apple IIGS
This is because Prol}5 & on an Apple 1G5 disk is in the file
v/SYSTEM/FE, not in the file PRODOS,

58 Part 1; How ProDOs 16 Works

e e e PR

froem “Boat I

PQUIT

e PQUIT is the ProDOS program dispatcher for the A
determines which ProDOS B or Prol205 16 program s to be run
next, and runs & After startup, POU i
memory; POUIT loads ProDOS 16 programs through cal
Svsiem Loader

; permanently re

the PEPQUIT entry point. Whenever a ProlXOS 16 ;
execuies 4 QUIT call, contrel passes theough the PLEPQUIT

¥

- o Fat " 1 - & > e
recUte an L.L. SYSTEM o pioing, To lunch the first program at system startup, /v
€5Vl Tha Toundr passes control 10 FQUIT as if executing a ProDd05 8 or ProDOS 16

QUIT call

the standard ProDOS B
call, and the Prold5 16

POULT sup
QUIT call, an &
QUIT call

= types of quit
nhanced ProldS 3 gl

o Tun-tms fa un-fme
om Setaction’ am Sova
Figure 510

Standard ProDOS 8 QUIT call

: The standard ProDd0s 8 QUIT call's parameter bleck consists ©
e IEYETEM [START one-byte parameter count field (which must have the value 504)
] followed by four null fields in this ordern: byte, word, byte, word. As
ProD0s 8 is currently defined, all fizlds must be present and all
& typically o progmam selactor Y s R
Nooee a program o ioad must be set to zera. There is thus no way for @ program 1o use the

standard QUIT call to specily the pathname of the next program 0

o &
sacuta

Fgure 5-2
Startup program salection fun

Enhonced ProDOS5 8 QUIT call
Sfﬂﬂing and quiﬂing ﬂpp"cmﬁons The enhanced ProDOS B QUIT call differs from the standand call

only in the permissibée values of the first two parameters Lis

The Apple 11GS startup sequence ends when control is passed to the parameter count field must stll have the value $04). In the
program selection routine (PQUIT), This routine is entered both at enhanced QUIT call, the fist (byie) parameter is defined as the qui
boot time and whenever an application terminates with 2 ProDOS fype. IF 1t s zern, the call is identical to a standard QUIT call; iF it is

16 or ProldOS5 8 QUIT call SEE

POUIT interprets the following (word) parameter as a pointer
ter 4 string which is the pathname of the next program 1o un

Chapter 5: ProDOS5 14 ond the Operating Envitonment oy &0 Part 1: How ProDO5 14 Works

The enhanced ProDO5S B QUIT call is meaningful only on the Apple
11GS, and only when PQUIT is present (o interpret it (that is, only
when the computer has been booted with an Apple TIG5 system
disk). It behaves like the standard ProldOS B QUIT call in any other
situation

% Note: Because of the way ProDOS uses memory, 4 ProDOS 8
application must not make an enhanced QUIT call (with a quir
type of SEE) from any location in page 2 of bank 00 (addresses
£00 0Z 00 — 500 02 FF).

ProDQS 16 QUIT call

The Pral¥05 16 QUIT call has two parameters: a pointer 1o the
pathname of the next program (o execute, and a pair of boolean
flags: one (the neftern flag) notifies POUIT whether or not control
should eventually return to the program making the QUIT call; the
other one (the restart-from-memory flag) lets the System Loader
know whether the quitting program can be restarted from memory
when it rehims,

If the value of the return lag is true, POUIT pushes the User 1D of the
calling {quitting) program onto an intemal stack. As subsequent
programs man and quit, several User ITVYs may be pushed onto the
stack. With this mechanism, multiple levels of shells may execule
subprograms and subshells, while ensuring that they eventually
regain control when their subprograms quit,

For example, the program selector (START file) might pass control
1o a soltware development system shell, using the QUIT call 1o
specify the shell and placing its own 1D on the stack. The shell in
turn could hand control to a debugger, likewise puting its own ID on
the stack. If the debugger quits without specifying a pathname,
control would pass automatically back 1o the shell; when the shell
quit, control would pass automatically back to the START file.

This automaltic return mechanism is specific to the ProDd05 16 QUIT
cill, and therefore is not available to ProDOS 8 programs, When a
ProDOS B application quits, it cannot put its 1D on the intemal
stack

Chapter 5 ProlOs 14 and the Operafing Emvdronment &1

&2

Part 1

QUIT procedure

This is a briel description of how PQUIT handles all three types of
QuIT call Refer also to Figure 5-3.

1. If a ProDOS 16 or enhanced ProD0S 8 QUIT call specifies 2
pathname, PQUIT atlempls (o execute the specified file. Under
certain conditions this may not be possible: the file may not
exist, there may be insufficient memary , and 50 on. In that case
the QUIT call executes the interactive routing described below
(step 3}

¢ Note: PQUIT will load programs of file type $B3, $B5, or $FF
anly.

[N

Il the QUIT call specifies no pathname, POQUIT pulls a User [0 of
its internal 1D stack and attempts 1o execule that program.
Typically, programs with User [[}'s on the stack are in the System
Loader's dormant state (see "User Shutdown” in Chapter 17),
and it may be possible o restant them without reloading them
from disk. Under certain conditions it may not be possible o
excoule the program: the file may not exisy, there may be
insufficient memory , and so on, In that case the QUIT call
execues the interactive moutine described next {step 33

3_ If the QUIT call specifies no pathname and the 10 stack is empty,
POUIT executes an inleractive routine that allows the user to do
any of these

O reboot the system

O execule the file /v/SY¥STEM/START

o0 enter the pathname of a program (0 execute

4, 1f the quitling program is 3 ProDOS 16 program, PQUIT calls the
loader's User Shutdown routing o place that program in a
dormant state

5, Once it has determined which program to load, PQUIT knows
which operating system is required, If it is not the curment sysiem,

4. PQUIT shuts down the current operating system and loads the
required one

b. PQUIT then makes Memory Manager calls to free memory
used by the former operating system and allocale memory
necded by the new system, IF the new operaling system (s
Prol¥D5 8, POUIT allocates all special memory for the
program

How ProldO5 14 Works

ti. The new program is loaded. PQUIT calls the System Loader to
load ProDO5 16 programs; for ProDOS 8 programs, PQUIT
passes control (o Prolx08 8, which then loads and execules its
own program direcily,

7. Finally f it is a Prol05 16 program), PQUIT 5215 up virous
aspects of the program's environment, including the direct-
register and stick-pointer values, and passes control to the
program.

Pral0s 16 Prolods &
Ul Col Sl Cod

Bxacula l l* Bxpcute

wtire

for tigrnome
masn that the o et
n@xl program DrcHgeam
Naxt program - e ——— S 4

fias Doan seacren

= § Salecied Program
e

Flgure 5-3
Run-fime progrom selection (QUIT coll)

Chapter 5: ProDOs 14 and the Operating Enviranment 63

Machine configuration at application launch

POUIT initializes certain hardware and software components of the
Apple 1G5 before it passes control to a program. There are many
other factors the machine's state that are nat considered here, such
as memory used by other software and the state of the dozens of soft
switches and pseudoregisters avallable on the Apple [1G5. This
section summarizes only the aspects of machine state that are
explicitly set by ProDOS 16,

s Reserved bank $00 space:

Addresses above approximately $9600 in bank zero are reserved
for ProDOS 16, and thesefore unavailable to the application. A
direct-page/stack space, of 4 size determined either by ProDOS
16 or by the application iself, is reserved for the application (see
Chaptes 6); it is located in bank $00 at an address determined by
the Memory Manager. ProDOS 16 requires no other space in
RAM (other that the language-card areas in banks $00, 301, SEO,
and SE1—see Figure 3-I).

s Hardware registers:

The accumulator containg the User 1D assigned to the
application

The X- and Y-registers contain zero (300000,

The e-, m-, and x-flags in the processor status register are all set
to zero, meaning thar the processor is in fdl rative mods,

The stack register contains the address of the wop of the direct-
page/stack space (sce Chapler 6}

The direct register contains the address of the bottom of the
direct-page/stack space (see Chapter 6)

s Standard lnput/outpul:
For both $B3 and 5B5 files, the standard input, output, and emor
locations are et 10 the Pascal B0-column character device
vectors. See "Text Tool Set® in Apgle [fos Toolbox Reference
s Shadowing:
The value of the Shadow register is 31E, which means;
language card and I/O spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

Port 1: How PraDOSs 16 Works

8 Vector space values:

Addresses between $00AB and $00BF in bank $E1 constitute
PraDO5 16' peclor hace—so named because it containg the
entry point (vector) to all PraDOS 16 calls, It also containg other
information useful 1o sysiem soltware such as AppleTalk®. The
spedific values an application finds in the vector space are listed
in Table 3-Z These ane the only fixed locations supported by
PraDOS 16.

s Pathname prefix values:

The nine available pathname prefives are set as described in the
NExl SECLon

Pathname prefixes

A pathname prefix is a part of a pathname that stans with a volume
name and ends with the name of a subdirectory. A preassigned
prefix is convenient when many files in the same subdirectory are
accessed, because it shonens the pathname references, A sof of
prefixes is convenient when files in several different subdirectories
must be repeatedly acoessed. The System Loader, for example,
makes use of multiple prefixes, Once the pathname prefixes are
assigned, an application can refer 1o the prefixes by code instead of
keeping rack of all the different pathnames,

PralOs 16 suppons 9 prefixes, referred 1o by the prefix numbers
04,174, 2/4,..,7/, and */. Each prefix number includes a
terminaling slash to separate it from the rest of the pathrame, A
prefix number at the beginning of a partial pathname replaces the
actual prefix. One of the prefic numbers has a fixed value, and the
others have defaull values assigned by ProDOS 16 (see Table 5-4)
The most important predefined prefices are

*{ the boot prefix—it is the name of the volume from which the
presently running Prolx08 16 was booted,

0/ the default prefix (automatically attached w any partial
pathname thal has no prefix numberi—it has a value
dependent on how the current program was launched, In some
cases it is equal o the boot prefix.

Chapter 5 ProDOs 16 and the Operating Envirarment 65

Table 5-3
Exarnples of praflx use

1/ the application prefix—it is the pathname of the subdirectory
that contains the currently monning application

2/ the system library prefix—it is the pathname of the
subdirectory (on the boat volume) that contains the library
fles wsed by applications,

Your application may assign the rest of the prefixes. In fact, once
your application is running, it may also change the values of
prefizes 0/, 1/, or 2/ (applications may not change prefix * /)

Prefix 0/ is similar 1o the ProDOS 8 system prifix, in that ProDOs
16 autcenatically attaches prefix 0/ to any partial pathname for
which wyou specify no prefix. Howewver, its initial value is not always
equivalent to the ProDOS 8 system prefic’s initial value. Ses

Profs & Technical Reference Manual

The prefix numbers are set (assigned to specific pathnames) and
retrieved through the SET_PREFIX and GET_PREFIX calls.
Although a prefix number may be used as an input (o the

SET PREFIX call, prefixes are always stored in memory ag full
pamﬂamm (that is, they include no prefix numbers themselves),

Table 53 shows some examples of prefix use. They assume thal
prefix 0/ is sel (o /VOLUHMELS and that prefix 5/ is set o
/VOLUMEL/TEXT .FILES/. The pathname provided by the cller
is compared with the full pathname constructed by Prol3OS 16,

Full pathname
provided:

Partial |:\-3[]|nu: -

implicit use of prefix /0.

Explicit use of peefix /0

Use of prefix 5/

o8 supplied

os expanded by ProDos 16

/VOLUMEL/TEXT.FILES/CHAP .3

PRODOS

0/5YSTEM/FINDER

S/CHRP.

/VOLUMEL/TEXT .FILES/CHAP .3

SVOLUMEL fPRODGS
fYOLUMEL fSYSTEM/FINDER

12 /VOLUMEL /TEXT .FILES /CHAF .12

b Part 1: How ProDOS 16 Works

Table 5-4
Initiai ProDOs 16 prefix values

Initial ProDOS 16 prefix values

When an application is launched, all nine prefix numbers are
assigned (o spedific pathnames (some are meaningful pathnames,
whereas others may be null strings), Remember, an application
may change the assignment of any prefix number except the boot
prefix (* /). Furthermore, in some cases certain initial prefix values
may be lelt over from the previous application. Therefore, bewars
af assuming a value for any particular prefix,

Table 54 shows the indtial values of the prefix numbers that a
ProDOS 16 application receives, under the three different
launching conditions possible on the Apple 11GS. At all dmes during
execution, GET NAME returns the filename of the current
application (regardless of whether prefix 1/ has been changed),
and GET_BCOT VOL returns the boot volume name, equal 1o the
value of prefix =/ (regardless of whether prefix 0/ has been
changed)

Prafix no.

Inilial valus

Prol»0s 16 a

launched at boot time: o/

boot volume name

full pathname of the directory containing the current
application

full pathname of the application libsary directory (/oo
tofume name/ SYSTEM/LIBS)

null string

null string

null string

null string

null string

boot volume name

Chapter 5: PraDOS 16 and the Operating Environment &7

Table 5-4 (continued)
it ProDOs 16 prefis values

Prefix no Inificl volue d
ProDOS 16 application
launched after a ProDOS 8
application has quit: o/ unchanged from the ProDOS 8 sistem prefix under the
previous application
1/ full pathname of the directory containing the carrent
application
2/ full pathname of the application library directory (/boot
polfume name/ SYSTEM/ LIBS)
ar null string
af nill string
g f

null string

B/ null string
T null siring
ProDOS 16 application
launched after a ProDOS 16
application has quit: o/ unchanged from the previous application
1/ full pathname of the directory containing the
current application
2/ unchanged from the previous application
al unchanged from the previous application
4/ unchanged from the previous application
5/ unchanged from the previous application
7 unchanged from the previous application
' ¥ unchanged from the previcus application
“f unchanged from the previous application
ProDOS 8 prefix and pathname convention
Prol308 & suppans a single prefix, called the system prafie (o
crrrent prefid. It has no peefix number—it is anached
automatically to any panial pathname (one that does not begin wits
a stash and a volume name). Like the ProDOS 16 prefixes, the
Prol¥25 B system prefix may be changed by a SET_PREFLX call
On a standard Apple 11, the default value of the sysiem prefix at
stariup is the boot volume name; however, Sysicm programs such
the Applesoft BASIC interpreter commonly reset the system prefix
1o orther valises
-] Part 1: How ProDOS 14 Works

Tabie 5-5

An application that is running under ProDOS B can always find its
own pathname by looking at location $0280 (in bank $00 on an
Apple 11GS);, ProDOS B stores the application’s full or partial
pathname there. For details of this and other ProDOS 8 pathname
conventions, see P08 8§ Technical Referemce Manual

On the Apple [1GS, the PQUIT routine allows a ProDOS 8
application to be launched at boot time, or after another ProDOS B
application has quit, or after a ProDOS 16 application has quit The
initial values of the system prefix and the pathname at location
$0280 are dependent on which way the application was launched
Table 5-5 lists the possibilities

Initiai ProDOS 8 prafic and pathname: volues

systemn preflx location $0280 pathnoma

ProDO5 8 application
launched ar boot time

Prald05 8 application
launched through an
enhanced Prol}05 8
QUIT call

ProDCE 8 application
launched through a

ProDOS 16 QUIT call

(Il the ProDOS 16 gUIT call
dpecified & il pathname)
ProD¥05 & application
launched through a

ProDOS 16 QUIT call

(If the ProDOS 16 QUIT call
specified a partial pathname)

boot volume name filename of the just-launched
application

unchanged from the previous the full or partial pathname given in
(ProD:O5 8) application the enhanced PeolX05 8 QUTT call

the previous (ProDOS 16) the full pathname given in the
application's prefix 0/ ProD}O8 16 QUIT call

the prefix specified in the the partial pathname {minus the
ProDOS 16 QUI'T call prefix number) given in the
PraDO5 16 QUIT call

@ Nate: Conditions (2) through (3b) in Table 5-4 apply only 1o
ProDOE 8 applications launched from an Apple IIGS booted on
an Apple I1GS system disk 1f a ProDOS 8 application on 3
standard Apple IT system disk Is booled on an Apple 11GS, the
Apple TGS acts like a standasd Apple I and condition (1) is the
only possibility.

Chapter 5: ProDOS 16 and the Operating Environment &

0

Tools, firmware, and sysiam_wnwure

Although ProDOS 16 Is the principal part of the Apple IG5
operating system, several “operating system-like” functions are
actually earried out by other soffware components. This section
briefly describes some of those components; for detailed
information see the references listed with each one.

The Memory Manager

As explained in Chapter 3, the Memory Manager takes care of all
memory allocation, deallocation, and housekeeping chores.
Applications obtain needed memory space either directly, through
requests 1o the Memory Manager, or indirectly through PraDOS 16
or System Loader calls (which in twrn obtain the memory through
requests to the Memory Manager).

The Memory Manager is a ROM-resident Apple 1165 ool ser; for
more detailed information on s functions and how to call them,
see Apple ITGS Toolbox Reference.

The Sﬁiam Loader

The System Loader is an Apple 1G5 tool set that works very closely
with ProDOS 16 and the Memory Manager, It resides an the system
disk, along with ProDO5 16 and other system softwarne (see "Apple
1165 System Disks” in this chapter). All programs and data are
loaded into memory by the System Loader.

The System Loader supports both static and dynamic loading of
segmented programs and subroutine libraries. It loads files that
conform 1o a specific format (object module format}; such files
are produced by the APW Linker and other components of the
Apple 1G5 Programmer's Workshop (see Apple (IG5
Programmer’s Workshop Reference),

The System Loader Is described in Part [11 of this manual

Part 1: How ProDioE 16 Works

Iﬁl Scheduler

The Scheduler is a tool set that functions in conjunction with the
Apple 1IGS Heartbeat Interrupt signal (see “Scheduler” in Apple BGS
Toolbar Reference), [ts purpose is 1o coordinate the execution of
interrupt handlers and other intermupt-based routines such as desk
ACCESSONIES,

The Scheduler is required only when an interrupt routine needs to
call a piece of system software, such as ProDOS 16, that is no
reentrant. If ProDOS 16 is in the middle of a call when an interrupt
occurs, the interrapting foutine cannot itself call ProDOS 16,
because that would disrupt the first (not yet completed) call The
system needs 3 way of telling an intermupt routine to hold off untl
the system software it needs is no longer busy,

The Scheduler accomplishes this by periodically checking a word-
length flag called the Busy word and maintaining 3 quese of
processes thal may be activated when the Busy word is cleased.
Interrupt routines that make operating system calls must go through
the Scheduler (see Chapter 73

The User ID Manager

The User 1D Manzger Is 4 Miscellaneous toal set that provides a way
for programs to obtain unique identification numbers. Every
memory block dllocated by the Memory Manager is marked with a
User ID that shows what system software, application, or desk
accessory il belongs 1o,

Part of each block's 2-byte User ID is a TypeID field, describing the
ategory of load segment that occupies it. All ProDOS 8 and
ProDOS 16 blocks are type 3; System Loader blocks are type 7;
blocks of controlling programs (such as a shell or switcher) are Iy pe
2; and blocks containing application segments are type 1.
Appencix [} diagrams the format for the User ID word. See
“Miscellaneous Tool Ses” in Appie If55 Toolbox Reference for
further details

PraDO5 16 and the System Loader rely on User IDVs to help them
restart or reload applications. See "Quit Procedure® in this chapter,
and “Restart” and *User Shutdown® in Chapler 17.

Chapter 5 ProDOS 16 and the Operating Ervircnment il

72

Part 1

All fatal errors, including fatal ProDiOS 16 errors, are routed
through the System Failure Manager, 4 Miscellaneous Tool ﬁnL It
displays a default message on the screen, or, if passed a pointer
when it is called, displays an ASCII string with a m:r-chnsm
message. Program execution halts when the System Failure Manager
i5 called.

The System Failure Manager is described under "Miscellaneous
Tool Sets” in Apple HGs Toolbox Reference.

How Prol05 16 Works

_

C_hqp'fer 6

Programming With ProDOS 16

74

This chapter presents requirements and SUERESUONS for writing
Apple 11GS programs that wse ProDOS 16.

Programming suggestions for the System Loader are in Chapter 16
of this manual Mare general information on how 10 program for
the Apple TGS is avallable in Frogrammers Introduction to the
Apple IIGS. For language-specific. programming instructions,
cansult the appropriate language manual in the Apple [1GS
Programmer’s Workshop {see "Apple IG5 Programmer’s
Workshop® in this chapter).

AppﬂEﬁon ;quimm:nis

As used in this manual, an application is a complete program,
typically called by a user, that can communicate directly with
ProDOS 16 and any other system software or firmware it needs, For
example, word processors, spreadsheel programs, and
programming-language inlerprelers an examples of applications.
Diata files and source-code files, as well as subroutines, libraries,
amed wtilities that must be called from other programs are not
applications.

To be an application, 2n Apple IG5 program must
[

consist of executable machine-language code
O be in Apple 1G5 object module formal (see Appendix D)

be file type $83 (specialized applications may have other file
types—ses Appendix A)

| have a filename extension of . SYS16 f you want it 1o be self-
booting at system startup—see Chapter 5)

0 make PralO5 16 calls as described in this manual (see
Chapter 8}

o ohserve the ProDOS 16 QUIT conventions (see Chaprer 3)

1 observe all other applicable ProDOS 16 conventions, such as the
conventions for intermupt handlers (see Chapler 7)

1 get all needed memory from the Memory Manager (see
Chapter 3)

Part |: How ProDOS5 16 Works

Most ather aspects of the program are up to you, The rest of this
chapter presents conventions and suggestions to help you create an
efficient and useful application, consistent with Apple NIGs
programming concepts and practices,

Stack and direct page

In the Apple 1G5, the 65C816 microprocessor's stack-pointer
register is 16 hits wide; that means that, in theory, the hardware
stack may be located anywhere in bank $00 of memory, and the
stack may be as much a5 64K bytes deep

The direct page is the Apple 1165 equivalent to the standard Apple
I zero page. The difference is that it need not be page zero in
memory. Like the stack, the direct page may theoretically be placed
in any unused area of bank $00—he microprocessor's direct
reglster is 16 bits wide, and all zero-page (direct-page) addresses
are added as offsets 1o the contents of that register.

In practice, however, there are several, restrictions on available
space. First, only the lower 48K bytes of bank $00 can be
allocated—ithe rest is reserved for IO space and system software
Also, because more than one program can be active a1 a lime, there
may be more than one stack and more than one direct page in bank
$00. Funhermore, many applications may want to have pans of
their code a5 well as thedr stacks and direct pages in bank $00

Your program should therefore be as efficient as possible in its use
of stack and direc-page space. The total size of bath sheuld
probably not exceed about 4K bytes in most cases, Suill, thar gives
you the opportunity 1o write programs that reqquire stacks and direct
pages much larger than the 256 bytes available for each on standard
Apple 11 computers

;ulnrnuﬂe allocation of stack and direct page

Only you can dedde how much stack and direct-page space your
program will need when it is unning. The best time to make that
decision is during program development, when vou create your
source fike(s), If you specify at that time the total amount of space
needed, ProD0S 16 and the System Loader will automatically
allocate it and set the stack and direct registers each time your
Program runs,

Chapter &: Programming With ProDOS 14 75

-]

dirsci-pogs /siock

Definition during program development

You define your program's stack and direct-page needs by
specifying a “direct-page/stack” object segment (KIND = $12; see
Appendix D) when you assemble or compile your program (Figure
&-1). ‘The size of the segment is the total amount of stack ani i&m
ur program needs, It is not necessary (o crea
F:mag;e sri::;mi?::u n:eds:n such space or il the ProDOS 16 :Itfa.ul.[_ is
sufficient (see "Prol¥05 16 default stack and direct page® later in ths
section), you may leave it out.

When the program is linked, it is important that the ::Iirc.cl-
page/stack segment not be combined with any other object .
segments 1o make a load segment—the linker rust creats a single
load segment corresponding to the direct-page/stack object _
segment. If there is no direct-page/stack object segment, the linker
will not create a cormesponding load segment.

1
|- YeHcaeg & Moussmmme

EFreci-pogo/iiock

sagrmant in e sagrmeant 5
objact ooda singls load
sagmant
Chnbae ! Tl Load Fie 3 The A PraDOS 16
e d Sysfem Loador i) tha
Segrmen Ragmant diocales s stock mgister
1 blaek i toihe highest
5 | Bank 500 pqual e]
Sagmant _ug';uﬂ i §iza 1o tha nive
B drect-poge/stack segment
N aril Ioad segment
SEgrTETy
Warmary Dark 1-[1]
H i
i 1
-
-l. oodar
-
i i
[1
1 '
ProDOt5 1 =——
1afs the
diract regser
o thie loweett
addres
nihe
isgmant

Figure &-1
Automatic direct-poge/stack allocation

Part I: How ProDO5 146 Works

Impardant

Allocation of run time

Each time the program is started, the System Loader looks for a
direct-page/stack load segment. If it finds one, the loader calls the
Memory Manager to allocate a page-aligned, locked memory block
of that size in bank $00. The loader loads the segment and passes its
base address and size, along with the program’s User ID and starting
address, 1o ProDOS 16, PraDOS 16 sets the A (aceumulator), D
(direct), and 5 (stack)} registers as shown, then passes contral (o the
program:

A = User ID assigned o the program
[= address of the first (lowest-address) byte in the direct-
page/stack space
5§ = address of the last (highest-address) byte in the direct-
+ page/stack space

By this convention, direct-page addresses are offsets from the base

of the allocated space, and the stack grows downward from the op
of the space

ProDO3 16 provides no mechanism for detecting stack averfiow
of undarfiow, of collision of the stack with the direct poge. Your

program must be carefully designed and tested o moake sum
this cannot occowr,

When your program terminates with 3 QUIT call, the System
Loader's Application Shutdown function makes the direct-
page/stack segment purgeable, along with the program's other
static segrments. As long as that segment is not subsequently purged,
15 conlents are preserved untll the program restans, See
“Application Shutdown® and *Restan” in Chapter 17,

Nore: There is no provision for extending or moving the direct-
page/stack space after its initial allocation. Because bank $00 is
50 heavily used, any additional space vou later request may be
unavailable—the memory adjoining your stack is likely to be
occupied by a locked memory block. Make sure that the amount
of space you specify at link time fills all your program's needs,

Chapter & Programming With PraDOSs 16 77

78

ProDOS 146 default slack and direct page

If the loader finds no direct-page/stack segment in a file at load
timne, it still reurns the program's User [D and starting address o
PraDOS 16, but it does not call the Memory Manager to allocate a
direct-page/stack space and it returns zeros as the base address and
size of the space. ProDOS 16 then calls the Memory Manager itself,
and allocates a 1K direct-page/stack segment with the fellowing
attributes:

ize: 1,024 bytes
e;::{m; program with the User D retuned by
the loader
fixed/movable: fixed
locked/unlocked: locked
purge level: 1
may cross bank boundary? no
may use special memony? yes
alignment; page-aligned
absolute starting address? no
fixed bank? yes—bank $00

See Apple TGy Toolbax Reference for 2 general description of
memory block atributes assigned by the Memory Manager.

Omee allocated, the default direct-page/stack is treated just as it
would be if it had been specified by the program: ProDOS 16 sets
the A, D, and § registers before handing control 1o the program,
and at shutdown time the System Loader purges the segmenL

Manual allocation of stack and direct page

Your program may allocate its own stack and direct-page space al
run time, If you prefer. When ProDOS 16 transfers control to your
program, be sure the program saves the User [D value lelt in the
aocumulator before doing the following:

Part |: How ProDO5 14 Works

1. Using the staring or ending address left in the D or 5 register by
ProDx05 16, it should make 3 FindHandle call to the Memory
Manager, o get the memory handle of the automatically-
provided direct-page/stack space. Then, using that handle, it
should get rid of the space with a DisposeHandle call,

. It ean now allocate its own direct-page/stack space through the
Memory Manager KewHandle call The allocated block must be
purgeable, fixed, and locked,

3. Finally, the program must place the appropriate values

(beginning and end addresses of the segment) in the D and §
registers

Managing system resources
Various hardware and software featres of the Apple 11GS can

provide an application with useful information, or can otherwise

increase 15 fexibility, “This section suggests ways 1o use those
features,

Global variables
Under ProDOS 8, a fixed-address global page maintains the values
of important variables and addresses for use by applications. The

global page is at the same address in any machine or machine

configuration that supports ProDXOS B, so an application can always
access those variables at the same addresses,

PraDOS 16 does not provide a global page, Such a set of fixed
loeations is inconsistent with the flexible and dynamic memory
management system of the Apple 11GS, Instead, calls to ProDOS 16,
tools, or firmware give you the information formerly provided by
the global page, Table 61 shows the Apple TGS calls used to obain
information equivalent to ProDOS 8 global page values,

Chapter &: Programiming With ProDOS 14 e

BO

Table &-1

Apple lies equivalents to ProDOS 8 global page Infommation

Global poge Informafion

Apple lig: Equivalent

Global page entry poinis
Device driver veciors
List of active devices
Memory Map

Pointers 1o L'O buffers
Interrupt vectors

Date/Time
System Level
MACHID

Application version
ProD{5 16 Version

(not supported)
{not supported)
reumed by VOLUME call

(ProDOS 16)
(responsibility of the Memory
Manager)

returned by OFEN call (ProDOS 16)
returned by ALLOC INTERRUPT call
(ProDOS 16)

remumed by ReadTime call (Misc
tool set)

returned by GET_LEVEL call
(ProDKO5 163

{not supporied)

(not supporned)

returned by GET_VERSION call
(Pro[08§ 16)

Of course, the Apple 1G5 always supports the ProDOS B global page
when a PmDOS 8 goplication is runming.

Prefixes

The nine available prefixes described in Chapter 5 affer
convenience in coding pathnames and Hexibility in writing for
different system and application disk volumes, For example, any
files on the boot disk can always be accessed through the prefix */,
regardless of the volume name of that particular boat disk. Any

library routine in the system library subdirectory will have the prefis
2/, regardless of which system disk is on line (unless your program
has changed the value of the prefix). If you put routines specific to
your application in the same subdirectory as your application, they
can always be called with the prefix 1/, regardiess of what
subdirectony or disk your program inhabits.

Part I: How ProDOS 14 Works

Your application can always change the values of any of the prefixes
except */. For example, it may change prefix 2/ if it wishes to
access libraries (or any other files) on a volume other than the boot
volume. But be careful: once you change prefix 1/, for example,
you can no longer use it as the application prefix. Be sure (o save the
value of a prefix number before you change it, if you may want 1o
recover it later.

Native mode and emulation mode

You can make ProDdO5 16 calls when the processor is in either
emulation mode or native mode. So If part of your program
requires the processor 1o be in emulation mode, you needn’t reset it
to native mode before calling ProDOS 16. However, emulation-
mode calls (o Prol05 16 must be made ffom bank $00, and they
can reference information (such as parameter blocks) in bank $00
only. Furthermore, intermupts must be disabiled

Prol¥36 B programs run entirely in emulation mode. If you wish to
modify 4 ProDOS B program to run under ProDdO5 16, or if you wish
to use Apple 1IGS features available only in native mods, see
“Revising a Prol¥05 8 Application for ProDOS 16" in this chapter.
See also Programmer's Introductiom to the Apple ITcs,

Selilng inifial machine canﬂgufnﬂnn

When an Apple [1GS application (rvpe $B3) is fimst launched, the
Apple 1IGS is in full native mode with graphics shadowing off (see
“Machine Configuration at Application Launch® in Chapter 5). If
your program needs a different machine configuration, it must
make the proper settings once il gains control,

ProDOS 16 does not initialize soft switches, fismware registers, or
any hardware registers other than those listed in Chapter 5. Your

program is responsible for initializing any needed switches and
registers,

Chapter &: Progromming With ProDOS 16 a1

82

+ "Setting up a Parameter Block in Memory” in Chapter 8

Allocating memory

All memory allocation is done through calls to the Memory
Manager, described in Apple [IGS Toolbox Referemce. Memory
space you request may be either mevable or unnmovable (fxed) I
it is movable, you access it through a memory handle; if it is
unnmovable, you may access it through a handle or through 2
pointer. Sinee the Memory Manager does not relurn a pointer Lo an
allocated block, you obtain the pointer by dereferencing the handle
{see Chapter 3).

ProDOS 16 parameter blocks are referenced by pointess; if you do
nol code them into your program segments and reference them
with labels, you must put them in unnmaovahle memory blocks, See

Lou?lng dl‘lﬂ[hﬂl‘ program

if you do not want your program to load another program when it
findshes, it should use & ProD0S 16 QUIT call with all parameters s
to 01, The QUIT routine performs all necessary functions o shut
down the current application, and normally brings up a program
selector which allows the user to choose the next program o load.
Most applications function this way.

However, if vou want your application 1o load and execute another
application, there are several ways to do it If you wish to pass
conteol permanently 1o another application, use the ProDOS 16
au1T call with only 3 pathname pointer, a5 described in Chapier &
If you wish contral 1o refurm to your application once the next
application is finished, use also the return flag parameter in the
gUIT call. That way your program can function similasly 1o 4
shell—whenever it quits to another specified program, it knows that
it will eventually be re-executed.

If you wish 1o koad but not necessarily pass control to another
program, of if you wani your program Lo remain in memory after it
passes control 1o another program, use the System Loader's Initial
Load function {described in Chapter 17). When your program
actively loads other program files, it Is called 3 controlling
program; the APW Shell (see "Apple [IG5 Programmer’s
Workshop” In this chapler) is 4 controlling program. Chapter 16
gives suggestions for writing controlling programs

Part |: How ProDOs 16 Works

e G

You can load a ProDOS B application (type $FF) through the
ProD}E 16 QUIT call, but you cannot do so with the Systam
Loader’s Initial Load call; the System Loader will load only PraDOS
16 load files (types SB3-5BE).

¢ Note: Because ProDi0S 8 will not load type $B3 files, ProDOS
B-based applications that load and run other applications
cannot run any ProDOS 16 applications. This restriction is a
natural consequence of the lack of downward compatibility. T
you wish 1o modify an older application 1o be able to use it with
ProDOS 16, see *Revising a ProDOS & Application for PraDOS
16," later in this chapter.

Using interrupts

Pro[}05 16 provides conventions (see Chapter 7) to ensure that
interrupt-handling routines will function correctly. If you are writing
i print spooler, game, communications program or other routine
that uses interrupds, please follow those conventions,

As explained in Chapter 4, an unclaimed friermipt causes a system
failure: control is passed to the System Failure Manager and
execution halts. Your program may pass a message to the System
Faiture Manager to display on the screen when that happens. In
addition, because the System Failure Manager is a tool, and because
all tocls may be replaced by user-writlen routines, you may
substitute your own error handler for unclalmed intermupts. See
Apple HES Toolbox Reference for information on the System
Failure Manager and for instructions on writing your own lool set

If ProDOS 16 is called while it Is in the midst of anather call, it issues
a "ProDOs is busy” error, This situation pormally arises only when
an interrupt handler makes ProDOS 16 calls; a typical application
will always find Prola0S 16 free to accept a call. Chapter 7 provides
instructions on how to avaid this error when writing intermupt
handlers; nevertheless, all programs should be able 1o handle the
“ProlM35 is busy” error code in case it occurs.

Chapfer & Programming With PraDOS 14 B3

Accessing devices

Under ProDO5 8, block devices on Apple 11 computers are specified
by a umit number, related to slot and dove number (such as slot 5,
drive 1). ProDOS$ 16 dees not direcdy support that numbering
system; instead, it identifies devices by dedce number and dewice
name As explained in Chapter 4, device numbers are assigned in
order of the device search at system startup, and device names are
assigned according 1o a simple ProDOS 16 convention. You must
use device numbers or names in ProDO5 16 device calls,

Far filing calls and for one device call (GET_DEV_NUM), you may
also access a device through the name of the volume on the device
In addition, you may use the GET_LAST DEV call to identify the last

. device accessed, in case you wish 1o acoess it again,

File cr;aiionfmndlﬁcuﬂon date nnd' time

The information in this section is imporant 1o you If you are wriling
a file or disk utlity program, or any routine that copies files,

All Prol¥05 16 files are marked with the date and ume of their
creaticn. When a file is fiest created, ProDOS 16 stamps the file's
directory entry with the current date and time from the system
clock, If the file is later modified, ProDOS 16 then stamps it with a
modification date and time (its creation date and time remain
unchanged).

The ¢reation and modification Gelds in a file entry refer to the
contents of the file. The values in these fields should be changed
only if the contents of the file change. Since data in the file's
directory entry itself are not part of the file's contents, the
modification field should not be updated when another field in the
file entry is changed, wnless that change is due to an alteration in
the file's contents. For example, a change in the file's name is nota
modification; on the other hand, a change in the file’s BEOF always
reflects a change in its contents and therefore is 2 modification.

Remember also that a file’s entry is 2 pan of the contents of the
directory or subdirectory that contains that erdry. Thus, whenever a
file entry s changed in any way (whether or not its modification
fiedd is changed), the modification Gelds in the entries for all its
enclosing subdirectories—including the volume direciorny—must

be updated.

Part |: How ProDOS 14 Works

Finally, when a file is cofded, a utility program must be sure (o give
the copy the same creation and modification date and time as the

orginal file, and nof the dawe and time at which the copy was
created.

To implement these concepts, file utility programs should note the
following procedures:

1. To create a new fAle:
4. Set the creation and modification fields of the file’s entry 1o
the current system date and time.
b. Set the modification fields in the entnes of all subdirectories
in the path containing the file o the current system date and
Lime
2. To rename a file:
4, Do not change the file's modification field.
b, Set the modification felds of all subdirectories in the path
containing the file to the current system date and time,
3. To alter the contents of a file:
a. ProDOS 16 considers a file’s contents to have been modified if
any WRITE or SET_ECF operation has been performed on the
file while it is open. If that condition has besn met, set the

file's modification field o the current system date and time
when the file i closed,

b. Also set the modification felds of all subdirectories in the
path containing the file to the current system date and time
4. To delete a file:

a. Delete the file's entry from the directory or subdirectory that
contains it

b. Set the modification fields of all subdirectories in the path
containing the deleted file to the current system date and
time,

5. To copy a file:

1, Make a GET_FILE INFO call on the source file (the file to be
copied), to get its creation and moedification dates and times.

b. Make 2 CREATE call 1o create the destination file (the file to be

copied o). Give it the creation date and time values obtained
in step (a).

€. Open both the source and destination files, Use READs and
WRITES to copy the source to the destination. Close bath files.

Chapter & Programming With ProDOS 14 BS

& Note: The procedure for copying sparse files s more
eomplicated than this. See Chaptler 2 and Appendix A

d, Make 2 SET FILE INFO call on the destination fike, using all
the information rewmed from GET_FILE_INFO in siep (ad
This sets the modification date and time values 1o those of the
source file.

PraDOS 16 automatically carries out all steps in procedures (1)
through (4). Procedure (5) is the responsibility of the fle-copying
utility.

) Ewlé.-lng a ProDOS 8 application for

ProDOS 16

If you have wrinen 4 Prol05 8-based program for a standard Apple
11 (64K Apple I Plus, Apple Ile, or Apple IIc), it will nun without
maodification on the Apple 1165, The only noticeable difference will
be its faster execution because of the greater clock speed of the
Apple IIGS. However, the program will not be able to take advantage
of any advanced Apple 11GS features such as large memoary, the
toolbox, the mouse-based interfzce, and new graphics and sound
ahbilities. This section discusses some of the basic alterations
necessary to upgrade a PraDOS 8 application for native-mode
execution under ProDOS 16 on the Apple [1GS5.

Because ProDO5 16 closely parallels ProDOS B in function names
and calling structure, it 5 not difficult to change system calls [rom
one ProDO05 to the other. But several other aspects of your program
also must be redesigned iF it is 1o run in native mode under ProDOS
16, Depending on the program’s size and struchure ard the new
features you wish 1o install, those changes may range from minot 10
drastic.

Memory management

Because the Apple 11GS suppors segmented load files, one of the
first decisions 1o make is whether and how to segment the program
{both the original program and any added paris), and where in
memory to put the segments.

Part | How ProDOS 16 Works

To help decide where in memory to place pieces of your program,
consider that execution speed is related 1o memory location: banks
SE0 and §E1 execute al standard clock speed, and all the other
banks execute at fast clock speed (see Apple Iies Hardware
Reference), Those pants of your program that are executed most
often should probably go into fast memory, while less-used pans
and data segments may be appropriate in standard-speed memory.
On the other hand, because all 1/O goes through banks SE0 or $E1,
program segments that make heavy use of 1/0 instructions might
work best in standard-speed memory, Performance testing of the
completed program is the only way o accurately determine where
segments should go.

Memory management methods are complelely different under
ProD05 16 than under ProDOS B, If your ProDOS B program
manages memory by allocating its own memory space and marking
it off in the global page bit map, the ProDOS 16 vesion must be
altered so that it requests all needed space from the Memory
Manager, Whereas ProDOS 8 does not check to see if you are using
only your marked-off space, the Memory Manager under ProDOS
16 will not assign to your program any part of memory that has
already been allocated.

Hardware configuration

ProD(5 8 applications nun only in 6502 emulation mode on the

Apple [1GS. That does not mean that applications converted 1o run

under Prolx05 16 must necessarily run in native mode. There are at

least three configurations possible:

O The pragram may run in emulation mode, but make ProDOS 16
calls.

O The program may ran in native mode with the m- and x-bits set.
The accumulator and index registers will remain 8 bits wide.

0O The program may run in full native mode (m- and x-bits
cleared)

Modifying a program for the first configuration probably fnvolves
the least effon, but refurns the least benefit

Modifying a program to run in full native mode is the most difficuly,
but it makes best use of all Apple 11GS features,

Chapter & Programming With ProDOs 18 &7

Converting system calls

For mest Prol05 8 calls, there is an equivalent ProDOS 16 all with
the same name, Fach call block must be modified for ProDOS 16:
the J5R (Jump to Subroutine) assembly-language instruction
replaced with a J5L (Jump to Subroutine Long), the call number
field made 2 bytes long, and the parameter list pointer made 4 bytes
long, The only other conversion required is the reconstruction of
the parameter block to the ProlOS 16 format.

For other ProDO5 8 calls, the ProDOS 16 equivalent performs a
slightly different task, and the original code will have to be changed
o account for that For example, in ProDOS 8 an O8_LINE call can
be used directly to determine the names of all online volumes; in
Preld05 16 a succession of VOLUME calls is required. Refer to the
detailed descriptions in Chapters 9 through 13 to see which ProDOS
16 calls are different from their Prold05% 8 counterparts.

5till other ProDOS B calls have no equivalent in ProDOS 16, They
are listed and described under “Eliminated ProlX08 B System
Calls,” in Chapter 1. If your program uses any of these calls, they
will have: 1o be replaced as shown.

Modifying interrupt handlers

IF you have wrilten an intermupt handling routine, it needs to be
updated 10 conform with the ProDOS 16 interrupt handling
conventions, There may be very few changes necessary: il must
requrn with an RTL (Return from subroutine Long) rather than an
RTS (Return from Subroutine), and it must start and end in 5CA16
native mode, See Chapter 7.

Converling stack and zero page

The fixed stack and zero-page locations provided for your program
by ProDOS5 8 are not available under ProDOS 16, You may either let
ProDOS 16 assign you 2 default 1,024-byte space, or you may define
direct-page/stack segment in your object code, In either case, the
lcader may place the segment anywhere in bank $00—you cannot
depend on any specific address being within the space, See “Stack
and Direct Page," earlier in this chapter.

Part I: How Prol05 14 Works

Compilation/assembly

Once your source onde has been modified and avgmented as
desired, you need 1o recompile/reassemble it You must use an
assembler or compiler that produces object fles in Apple 11GS
object module format (OMF); otherwise the program cannot be
propely linked and loaded for execution, Using a different
compiler or assembler may mean that, in addition to modifying
your program code, you might have to change some assembler
directives o follow the syntax of the new assembler,

If you have been using the EDASM assembler, you will not be able o
use it to write Apple [1GS programs, The Apple [1GS Programmer's
Warkshop is a set of development programs thar aflow you to
preduce and edit source files, assemble/compile object files, and
link them inte proper OMF load files. See "Apple 11GS
Programmer's Workshop® in this chapier

After your revised program is linked, assign it the proper Apple TIGS
application file type (normally $B3) with the APW File Type
utility

Apple llcs Programmer's Workshop

The Apple IG5 Programmer's Workshop (APW) is a powerful set of
development programs designed to facilitate the creation of Apple
UGS applications. If you are planning to write programs for the

Apple 1G5, APW will make your job much easier, The Workshop
includes the following components

g Shell

O Editor

O Linker

0 Debugger
[

Assembler
C

C Compiler

All these components work together (under the Shell) 1o speed the
wriling, compiling or assembling, and debugging of programs. The
Shell acts as a command interpreter and an imerface 10 ProDO3§ 16,
providing several operating system functions and file utilives that
can be called by users and by programs running under the Shell,

Chapter & Programming With PraDOS 16 B9

See the following manuals for more information on the Apple I1GS
Programmer's Workshop:

0 Apple TGS Programmer's Workshop Reference (describes the
Shell, Editor, Linker, and Debugger)

0 Apple TGS Programmers Workshop Assembler Reference
O Apple HGS Programmers Workshop © Reference

Human Interface Guidelines
All people who develop application programs for the Apple TGS
computer are strongly encouraged o follow the principles

Jpresented in Human Intenface Guidelines: The Apple Deskiop

Imterface. That manual describes the deskiop user interface
through which the computer user communicates with his compuer
and the applications running on il This section brieflly outlines a
few of the human interface concepts; please refer to the manual for
specific design information

The Apple Desktop Interface, first introduced with the Macintosh™

computer, is designed to appeal 1o a nontechnical audience:

Whatever the purpose or structure of your application, it will

comunicate with the user in 2 consistent, standard, and non-

threatening manner if it adheres o the Deskiop Interface standards,

These are some of the basic principles:

® Human control: Users should feel that they are controlling the
program, rather than the reverse. Give them clear alternatives 1o
select from, and act on, their selections consistently.

= Dialog: There should be a dear and friendly dialog between
human and computer. Make messages and requests to the user in
plain English.

® Direct Manipulation and Feedback: The user’s physical
actions should produce physical results, When a key is pressed,
place the commesponding lenter on the screen, LUse highlighting,
animation, and dialog boxes to show users the possible actions
and thelr consequences

s Exploraton: Give the user permission 1o lest oul the possibilites
of the program without worrying about negative consequences,
Keep ermor messages infrequent. ' Warn the user when risky
sitfuations are approached,

Port I: How ProDOS 16 Works

Graphic deslgn: Good graphic design is a key feature of the
guidelines. Objects on the screen should be simple and clear,
and they should have wdoual fdelity (that is, they should look like
what they represent), foons and palettes are common graphic
elements that need careful design.

Avolding modes: a mode is 3 portlon of an application that the
user has to formally enter and leave, and that restricts the
operations that can be performed while iUs in effect. By
restricting the user’s options, modes reinforce the idea that
computers are unnatural and unlrendly, Use modes sparingly

Device-independence: Make your program as hardware-
independent as possible. Don't bypass the tools and resources in
ROM—your program may become incompatible with future
products and features

Consistency: As much as possible, all applications should use
the same interface. Don'l confuse the user with a different
interface for each program

Evolutlon: Consistency does not mean that you are restricted 1o
wsing existing deskiop features, New ideas ane essential for the
evolution of the Human Interface concept. If your application
has a feature that is described in HMuman meerface Guidelines,
you should implement it exactly as described; if it is something
new, make sure it cannot be confused with an existing feature. It is
better 1o do semething complelely different than to half agree
with the guidelines

Chapter &: Programming With ProDOS 14 7l

Chapter 7

Adding Routines to ProDOS 16

w3

This chapter discusses additional specific routines that may be used
with ProDO5 16, Because these routines are directly Cﬂnnl:d_.:d [[x}
ProDO5 16 and interact with it at 2 low level, they are essentally
transparent to applications and can be considered "pcar_: af”
Prold)5 16, Interrupt handlers are the only such extensions 1o
ProDOS 16 presently suppored

Interrupt handlers

The Apple OGS has extensive firmmware intermuipl suppor (see Affle
IfGS Firmuware Reference), In addition, ProDOS 16 supparts up (o
16 user-installed interrupt handlers (see Chapter 4). If you write an
. interrapt handler, it should follow the conventions described here
Mote also the precautions you must take if your handier makes
operaling system calls,

Interupt handler canvnﬂiians

Intermupt handling routines written for the Apple 11GS must fﬂ-!lm'.-’
cemain conventions, The interrapt dispatcher will set the following
machine state before passing control 1o an interrupt handier:

e = 0
m - 0
% = 0
i = 1
c = 1
speed = high

Before returning 1o ProDOS 16, the intermept handler must restone
the machine to the following state:

e = 0
m = 0
x = 0
i =- 1
speed = high

How PraDos 14 Works

In addition the c flag must be cleared (= 0) if the handler serviced
the interrupt, and set (= 13 if the handler did not service the
interrupt, The handler must return with an RTL instruction,

When an interrupt is passed 1o ProDOS 16, ProDOS 16 first sets the
processor to full native mode, then successively polls the installed
interrupt handlers. If one of them services the interrupt, ProDOS 16
knows because it checks the value of the ¢ flag when the routine
returns. [f the c flag is cleared, ProDOS 16 switches back to 2
standard Apple I1 configuration in emulation mode, and performs
an RTI to the Apple 1G5 firmware intemupt handling system. If no
handler services the interrupt, it is an unclaimed interruptl and it will
result in system falure (see Chapter 4),

Installing inierrupr-handlers

Interrupt handlers are installed with the ALLOC_INTERRUPT call
and removed with the DEALLOC_INTERRUPT call The PraDOS 16
interrupt dispatcher maintains an interrupt vector table, an array
of up 0 16 vectors to interrupt handlers, As each successive
ALLOC_INTERRUPT call is made, the dispatcher adds another
entry to the end of the table. Each time a DEALLOC INTERRRUPT
call is made 1o delete a vectar from the table, the remaining vectors
are moved toward the beginning of the array, filling in the gap.
Internspt handling routines are polled by ProDOS 16 in the order in
which their vectors ocour in the interrupl vector table,

There is no way to reorder interrupl vectors except by allocating
and deallocating internapts. Interrupts that occur often or require
fast service should be allocated first, so their veciors will be near the
beginning of the interrupt vectar wable, I you need extremealy fast
interrupt service, install your interrupt handler directly in the Apple
0G5 firmware interrupt dispatcher, rather than through ProDOS 16,
See Apple INGS Firmware Reference for further informaticn

Be sure (o enable the hardware generating the interrupt only
after the routine 1o handle it is allocated; likewise, disable the
hardware bafore the routine is deallocated. Otherwise, a fatal
unclaimed tnterrupl error may occur (see "Unclaimed
Interrupts”™ in Chapter 4)

Chapter 7: Adding Routines to PraDOS 14 75

Part |

Making operating system calls during interrupts

ProDOS 16 is not reentrant. That is, it does nol save ils own state
when interrupled, It therefore is illegal to make an operating system
call while another operating system call is in progress; if a call is
attempted, ProDOS 16 will return an error (number $07, "ProDO5
is busy™)

For applications this is not a problem; the operaling system Is
always free o accept a call from them, Only routines that are staned
through interrupts (such as interrupt handlers and desk acoessories)
need be careful not to call ProDd08 16 while it is busy,

One acceptable procedure is for the interrupt handler to consult the
ProDOS busy flag at location SE100BE-SE100BF (see Table 3-3),
and simply not make the sysiem call unless ProDdO5 16 5 not busy

If an interrupt handler really needs to make an operating system
call, it must be prepared to deal with a returned *ProlX05 is busy®
efeaf. IF thit hippens the haadlar shauld

1. Defer itself temporarily

2. Retrn control to the operating system so that the operating
system may complete the current call

3. Regain control when the operating system is no longer busy, and
make ils own system call

The Scheduler, part of a ROM-based tool set, allows intermapt
handlers o follow these procedures in a simple, standard way. The
Scheduler consults a system Busy word that keeps track of noen-
reentrant system software that is in use, ProDOS 16 executes the
Scheduler routine INCBUSYFLAS whenever it is called, and
DECBUSYFLAG before it returns from 2 call An interrupt handler
may use the Scheduler's SCHADDTASK routine (o place izell in a
queue of tasks waiting for ProDOS 16 to complete any calls in
prograss. Sas Apple IS Thalbax Reference for detailed

information.

How ProDos 16 Works

ProDOS 16 System Call
Reference

This part of the manual describes the ProDOS 16 system calls in
detail. The calls are grouped into five categories:

0 File houscheeping calls (Chapter 93
o File access calls (Chapter 100
O Device calls (Chapter 11}
O Environment calls (Chapter 12
O Interrupt contral calls {Chapter 13)

Chapter 8 shows how 10 make the calls, and explains the format for
the call descriptions In Chaplers 9 through 13, See Appendix E for a
list of all ProDOS 16 emars retumned by the calls

C h uptEr 8 Any independent program in the Apple 11G5 that makes sysiem
calls is known as a ProDOS 16 calling program or caller. The

current application, a desk accessory, and an interrupt handler

are examples of potential callers. A ProDOS 16 caller makes a

system call by executing a call block. The call block contains a

qulng PFDDOS l 6 Cﬂ“s pointer 1o a parameter block. The parameter block is used for
passing information berween the caller and the called function;
additional Information about the call is reflected in the sute of
certain hardware registers. This chapler discusses these aspects of
system calls and compares them with the calling methed used in
ProldS 8.

& Note: The phrase system call as used here is synonymous with
operating system call or ProD0S 16 call, and s equivalent to

. MLI call for ProDOS 8. It includes all calls to the operaling
system for accessing system Information and manipulating
apen or closed files. It is not restricted o what are cilled
“system calls® in the ProDOS 8 Tecknical Reference Marnual

The call block

A system call block consists of 2 JSL (Jump (o Subroutine Lomg) 1o

the ProDOS 16 entry point, followed by a 2-byte system call number

and a 4-byte parameter block painter. ProDOS 16 performs the

requested function, if possible, and returns execulion to the

instraction immediately following the call biock.

All applications writien for the Apple 11GS under ProDOS 16

must use the system call block format. When making the call, the

caller may have the processor in emulation mode or full native

maode or any stale in between (see Technical ftroduction to the

Apple I1GS)

¢ Note: To call PraDOS 16 while running in emulation mode,
your program must be in bank 500 and interrupls must be
disabled

i 100 Part I ProD0s 14 System Call Reference

octherwise, continue.

The call block looks like this;
PRODOS GEQU SE100AS Ziunid tsy vedbox Types of parameters

) fach feld in a parameter block contains a single parameter. There
. are three types of parameters: values, results, and poinfers. Each is
J3L BRODOS ; either an froud 1o PraDOS 16 from the caller, or an oudput from

= ¢ Dispateh call to ProDOS 16 entr PraDO5 16 o the caller. The minimum field size for a meter is
o 12 "CALLNUM' ¥ A
o T4 ‘;p R”;JM . i 2-byte call number one word (2 bytes; see Table 3-13,

LOCK 4-byte parameter block pointer A :) i
BCS ERROR i If carry set o A vahue is a numerical quantity, 1 or more words long, that the
1 e 48 B erroe: handler caller passes to Pro[¥05 16 through the parameter block 1t s an

il parameler
O A result is 2 numerical quantity, 1 or more words long, that
ProDOS 16 places into the parameter block for the caller 10 use.

ERROR .
¢ error handler It is an oudptid paramelter
0° A polnter is the 4-bytc (Jong word) address of a location
contalning data, code, an address, or buffer space in which
FARMBLOCK ProDOS 16 can receive or place data. The pointer itself is an

7 parameter block

The call block itself conslsts of onl i
y the JSL instruction and the D
(Define Constant) assembler directives, The BCS (Branch DEIE:I'}"

Set) instruction in this example is a condid
onal branch
handler called ERROR. e

A J5L rather than a J5R Jump to Subroutine) i

: is required because
E_]'u: JSL uses a 3-!:!1.1& address, allowing a caller to make the call
from anywhere in memory, The J5R instruction uses only a 2-byte

address, restricting it to jum: Lt
' ps and refurns within the
bleck of memory, " current (64K)

he parameter block
A parameter block s a specifically formatted tabl i
: e thal ocoupies a
set of contiguous bytes in memory. It consists of a number o&']ﬁ:]ds

that hold information that the calling program supplies 1o the

ction it as well as information e e the fun
fi ¥ calls, s
I d h'j? unction to

Every ProDOS 16 call requires a valid parameter b ARMB

in the example just given), rcFe;enc&dFI; a 4-byte Ig-fkmf:r in :I';?:EE
block. The caller is responsible for constructing the parameter
I::Ind-: for each call it makes; the list may be anywhere in memory
Formats for individual parameter blocks accompany the d.cr.a:'[e;::l.
system call descriptions in Chapters 9 through 13

Chapter 8 Making ProDos 14 Calls 1M

input for all ProDOS 16 calls; the data it points to may be either
inpndl OF Gl

A parameter may be both a value and a resull. Also, 3 pointer may
designate a location that contains a value, a result, or both,

¢ Nofe: A handle is a special type of pointer; it is a pointer 10 2
pointer. 1t is the 4-byte address of a location that {fself contains
the address of a locatlon containing data, code, or buller
space. ProDO$ 16 uses a handle parameter only in the OPEN
call (Chapter 10); in that call the handle is an ougprr (result).

Parameter block format

All parameter fields that contain block numbers, block counts, fle
affsets, byte counts, and other file or volume dimensions are 2
bytes long, Requiring 4-byte ficlds ensures that ProDO3 16 will
accommodate future large devices using guest file systems.

All parameter fields contain an even number of bytes, for ease of
manipulation by thel6-bit 65CB16 processor. Thus pointers, foe
example, are 4 bytes long even though 3 bytes are sufficient 1o
address any memory location. Whernever such extra bytes oocur
they must be set 1o zero by the caller; if they are not, compatibility
with future versions of ProDO5 16 will be jeopardized

part - PraDOS 16 System Call Referance

_orde 2. Use Memory Manager and System Loader calls to place the block
Pointers in the parameter block must be writen with the Jow: -

in memory:
byte of the low-order word at the lowest address, a. Request a memory block of the proper size from the Memary
Comparison of ProDOS 16 parameter blocks with their ProDOS 8 Manager. Use the procedures described in J‘;Pf"jﬂg; =
counterparts reveals that in some cases the arder of parameters is Toolboe Reference. The block should be either
slightly different. These alterations have been made 1o facilitate locked.

sharing 3 single parameter block among a aumber of calls, For
example, most file access calls can be made with a single parameter
block for each open file; under ProDO5 B this sharing of parameter
blocks is not possible,

b. Obtain a pointer to the block, by d.:referendng: the memory
handle retumed by the Memory Manager (that is, read the
contents of the location pointed to by the handle, and use that

value a5 a pointer to the hlock)
Set up your parameter block, starting at the address pointed o}
by the pointer obtained in step (b).

[=
Important A parameter’s flald width In o ProDOS 14 porameter block ks
offen very different from the range of permissihle values for that
parameater, The fact that all lekds ore on even Aumber of bytas z
Iz oRe eason. Another reason Is that certain feids are larger - T — = ———— =
than presantly needed in anticipation of the requirements of

future guest flle systems. For example, the ProDOS 18 CREATE Register values "
call's parameter bleck ncludes a 4-byte a2ux_type flald, even . i nis on entry to 2 ProDOs 16 call,
thaugh. on disk, the aux_type flald B only 2 bytes wide (see me:gz‘i;:gf;m;;iﬁ;::“ :egist:rsu:xcl&]:'[the acoumulator
“Femnat and Organization of Directory Flles® In Appendlx A). E:S :n{i the processar status register (P); these two registers store
erhm high-order bytes In the fisld must thersfore always be information on the success ar failure of the call. On exit, the
registers have these values:
Ranges of permissble values for all parametens ore glven as part s) ode
of the system call descriptions In the following chapters. When A zero if call successful; if nonzero, number is the error coded
coding o parameter block, note carefully the range of % unchanged
parmissible values for eoch parameter, and make sure that e ¥ unchanged
value you assign Is within that range. 5 unchanged
] unchanged
P (ses below)
: — DB unchanged
Settingup o meter bl in mem B unchanged
SRR povs ock i ic ;ddmssggf location following the parameter block pointes
Ear.'.hFmDDS1ﬁﬁJlu5ma4-h}ﬂ.cpn[ﬂtermpchnmiispm1ntlﬂ o et
block, which may be anywhere in memory. All applications must “Unchanged” means that ProDOS 16 initially saves, and L em 58
obtain needed memory from the Memory Manager, and therefore restores when finished, the value the register had just before the
cannot know in advance where the memory block holding such a FRODOS 8 instructicn,

parmeter block will be,

There an: two ways 10 set up a ProDOS 16 parameter block in

MEMmory;

1. Code the block directly into the program, referencing it with a
label. This is the simplest and most typical way to do it The
parameter block will always be comectly referenced, no matter
where in memory the program code is loaded,

Chapter 8: Making ProDos 14 Cals 103 104 Part Il: ProDOS 16 System Call Refersnce

—_

On exil, the processor status register () hits are

n undefined

v undefined

m unchanged

x unchanged

d unchanged

i unchanged

z undefined

C zero if call successful, 1 If not
- unchanged

L

mﬂ‘:ﬂe:;mém 16 weats several flags differently than ProDOS 8
nd z flags are undefined here; under ProDS 8, the
i::c;n;inﬁén the value in the dccumulator. Here I[h: fa&:i
e ¢ flag to see if an en -
1 ror has occurred;
ProDOS 8, both the ¢ and z lags determine error SL::L: e

Comparison with the ProDOS 8 call mﬂrﬁ

3’;[.:]“!:? uI:;.er[iuns nated in Chapter 1, ProDOS 16 provides an
al call for each ProDOS 8 system call. The ProDOS

K ro)
pe.:‘form.s_ exactly the same function as its ProDOS 8 D?balm b
it iz in a format thar fits the Apple 1G5 environment i

o i
itsﬂr:n :—'mDJ:DE 8, the system call is issued through a subroutine
inmictr_;: J_xved system entry poinat, However, the jump
n is 2 JSL rather than a J5R, and it is o 2 location In
bank $E1, rather than bank $00.

& .
ol r;:pal-arru:ncr block pointer in the system call is 4 bytes lon
ther than 2, so the parameter block can be anywh : ’
St ywhere in
n] ;]I memory pointer fields within the parameter block are als
yies long, so they can reference data anywhere in memory, =

All 1-byte parameters are
: _ extended 10 1 word in length
efficient manipulation in 16-bit processor mode s

.I:Iig:enpcslunn {such as EOF) and block-specification (such as
numbser or block count) lelds in the parameer blﬂ i
bytes long, in anticipation of future guest file systems h:w I
suppart files larger than 16 Mb or volumes larger than 32 [%1]:: -

]

=

Choapter 8: Making ProDos 16 Calls 108

& Note: Although only 3 bytes are needed for memory pointers
and block numbers in the Apple 1168, 4-byte polnters are used
for ease of programming. The high-order byte in each case is
reserved and must be zero,

The ProDOS 16 Exerciser
To help you learn o make ProDOS 16 calls, there is & small
program called the ProDOS 16 Exerciser, on a disk inchuded with
this manual. 1t allows you to eéxecule Sysiem calls from 2 menu, and
examine the results of your calls. 1t has a hexadecimal memaory
editeor for reviewing and altering the contents of memory bulfers,
ind it includes a catalog command.
When you use the Exerciser to make 3 ProDOIS 16 call, you first
request the call by its call number and then specify its parameter
list, just as il you were coding the call in a program. The call is
axecuted when you press Return You may then use the memary
editor or catalog command 1o examine the results of your cail.
Instructions for using the ProDOS 16 Exerciser program are in
Appendix C.

Format for system call descriptions
The following five chapters list and describe all ProDOS 16
operating system functions that may be called by an application

Each description includes these elements:

O the function's name and call number

1 @ short explanation of iis use

0 a diagram of its required parameter block

O a detailed description of all parameters in the parameter block

O a list of all possible operating system error MeSSages.

The parameter block diagram accompanying each call's
description is a simplified representation of the parameter black a8
memaory. The width of the diagram represenls one byte; the
numbers down the left side represent byte offsets from the base

address of the parameter block, Each parameter field is further
identified as containing a value, result, or polnter.

Part Il: ProDos 16 System Coll Refarence

The detailed parameter description that follows the diagram has the
following headings
® Offset: The position of the parameter (relative to the block's
base address)
& Label: The suggested assemnbly-language label for the parameter
B Description: Detailed information on the parameter,
including:
parameter name: The full name of the parameter
size and type: The size of the parameter (word or long word),
and its dassification (value, result. or pointer). A word is 2 byles;
i long word is 4 bytes
range of values: The permissible range of values of he
pdrameter. A parameter may have a range much smaller than its
size In bytes
Any additional explanalory information on the parameter
follows

Chapter 8 Making ProDos 14 Colls 107

_

Chapter 9

File Housekeeping Calls

These calls might also be called “closed-file” calls; they are made — e —_—
1o get and set information about files that need not be open when CREATE (53])
the calls are made. They do not alter the contens of the files they] N
ACCEss, Every disk file except the volume directory file (and any Apple 1T
. - Fascal region on a panitioned disk) must be created with this call, It
The PeoDOS 16 file housekeeping calls are described in this order: establishes a new directory entry for an empty file,
Mumber Funchon Purpose N of -]
501 CREATE arales i new e E : pothnamig : oot
$02 DESTROY deletes a file 4
$04 CHANGE_PATH changes a file’s pathname sl Dorast] volue
305 SET_FILE_INFO assigns attributes (o a file ﬁ' - file_type i e
506 GET_FILE_INFO returns a file's atnbules 4L]
08 VOLUME returns the volume on a device : = aux_type - Wl
09 SET PREFIX assigns a pathname prefix B[B
£0A GET_PREFIX refurng 4 pathname prefix E - storoge_type = value
fon CLEAR BACEUF BIT zeroes a file's backup attribue E
- = Ef craéate_date = wvalug
e}
nr create_ftime = yaolue
CREATE ($01)
Parametar block
Parameler descrplion
Offsel Label Description
S00-503 pathname parameter name: pathname
size and type: long word pointer Chigh-order byte zero)
range of values: $0000 0000-S00FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the pathrname of the file 1o
create,
)
110 Part il: ProDOS 14 System Call Referance I Chapter 9: Flle Housakesping Calls m

Parameler description (continued)

Citsat Label !}ilcﬂmlun_
L04-%05 access parameter name: 100ess
slze and type: word value Chigh-order byte zern)
range of valoes: $0000-500E3 with exceptions
A word whose low-order byte determines how the file may be
accessed, The access byte's format is
m [7]a]s]afaf2]1]0]
vaiue: | D[R] B | reserved |W I-!]
“where [= destrov-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-cnable bit
R = read-enable bit
arvd for each bit, 1 = enabled, § = disabled. Bits 2 through 4 ase
reserved and must always be set 1o zero (disabled). The most typical
serting for the acoess byte is $C3 (110000117
306-507 file type parameter name: file type
size and type: word value Chigh-order byte mero)
range of values: S0000-500FF
A number that categorizes the file by its contents (such as text file
binary file, ProDOS 16 application). Currently defined file Lypes
are listed in Appendic A
508-3008 aux_type parameter name: auxiliary type

long word value Chigh-order word zero)
S0000 D000-30000 FFFF

size and type:
range of values:

A number that indicates additional arributes for certain file types.
Example uses of the auxiliary type feld are given in Appendix A

112 Part 1l: ProDOS 146 Systen Call Refersnce

Parameler description (conlinued)

Offsel Lkl Description
S0C-50D SCorage_type parameter name: siorage ype
size and type: word value/result Chigh-order byie zero)
range of values: F0000-5000D with exceptions
A number that describes the logical organization of the file (see
Appendix Al
500 = inactive entry
301 = seedling file
$02 = sapling file
303 = iree file
504 = Apple 11 Pascal region on 4 paritioned disk
30D = direciory file
501 and 50D are the most wpical input values for this Geld in the
CREATE call; any value in the range $00 through $03 is
automatically converted 1o an input (and output) of 501.
©® Note: S0E and S0F are not valid storage types; they are
subdirectary and volume key block identifiers,
$UE-$0F

cre E.T.E_'."!.‘l Ea

parameter name: creation dale
size and type:
range of values:

word value
limited range

The date on which the file was created, Its format is

Byte 1 Byt 0
s Nsfafa2[n0]e[a]7[&]5][4[3]2]1]0
VilLie Year Maonth Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock,

Chapter & Flle Housakeaping Calls 113

Porameter description (confinued)

Oifset Label Descriplion

$10-311 create_tims parameter name: creation time
size and type: wond value
range of values: limited range

The time at which the file was created. Its format is

Byte 1 Byte O
ar [Isnapaz[nofe(a[7[&[5]4]3]2]1]0
vaue: (O[O0 Haur I Minute

.

[the value in this feld is zero, ProD08S 16 supplies the time
obtained from the system clock

Possible ProDOS 16 ermors

507 ProDO5 is busy

510 Device not found

jz7 10 ermror

§2B Disk write-protected

£40 Invalid pathname gyniax

544 Path not found

545 Volume not found

346 File mat found

547 Duplicate pathname

548 Volume full

5409 Volume directory full

4B Unsupported storage (ype

352 Unsupported volume type

§53 Invalid parameter

$58 Mot a block device

554 Block number out of mnge
114 Part ll: PraDas 14 System Coll Reference

0
2' - pathname = poanter
3

DESTROY (502)
Parameter block

Porameler description

Cfsel Label

DESTROY ($02)

This function deletes the file specified by pathname. It removes the
file"s entry from the directory that owns it and returns the file's
blocks to the volume bit map,

Volume directory files, files with unmecognized storage types (other
than 301, 502, 303, or $010), and open files cannot be destroyed,
Subdirectory files must be emply before they can be destroved.

& MNote: When a file is destroyed, any index blodks it contains are
inverted—that is, the Arst halfl of the block and the second half
swap positions, That reverses the order of the bytes in all
pointers the block contains. Disk scavenging programs can use
thiz information (o help recover accidentally deleted files. See
Appendix A for a description of index block structure,

Description

F00-503 pathname

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: S0000 O000=-S00FF FFFF

The long word address of a buffer, The bulfer containg a length byte

followed by an ASCII string representing the pathname of the file 1o
delets

Chapter %: Flle Housekesping Calls 115

Possible ProDOS 14 erors

507 ProDO5 is busy

510 Device not found

$27 1/0 error

428 Disk write-protected

$40 Iovalid pathrame syntax

S44 Path not found

545 Volume not found

S46 File not found

F4A Version error

348 Unsupported storage type

$4E Access: [ile not destroy-enabled

550 File is open

$52 Unsupported volume type

558 Mat a block device

554 Block number cut of mnge
114 Part ll: ProD¥D5 16 System Call Refaranca

CHANGE_PATH ($04)

This functicn performs an intravolume file move, It moves a file's
direciory entry from one subdirectory (o another within the same
volume (the file itself is never moved), The specified pathname and
new pathname may be either full or partial pathnames in the same
volume. See Chapter 5 for an explanation of partial pathnames.

To rename a volume, the specified pathname and new pathname
must be volume names only

If the two pathnames are identical except for the rightmost file name
(that is, if both the old and new names are in the same
subdirectory), this call produces the same result as the RENAME call
in ProDD05 B

= BEfRRSTS 3 BoiAtEr

= e _palhnome — poinfer

A

CHANGE_PATH (504)
Farameter bock

+ Note: In initial releases of ProDOS 16, CHRNGE PATH s

restricted to a filename change only—that is, it is functionally
identical 1o the RENAME call in ProDOS 8.

Chaplar %: File Housakaaping Calls nz7

I

Paramaeter descriplion

Cffsel Label Descriplion

$00-803 pathname parameter name: pathname
slze and type: long word pointer Chigh-order byte zero)
range of values: $0000 0000-$00FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the file's present
pathname

504-%07 new pathname parameter name: new pathname
size and type: long word pointer Chigh-order byte zero)
range of values: 0000 00O0-S00FF FEFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCIT string representing the file's new pathname.
Possible ProDOS 16 errors
a7 Prol08 is busy
527 17D error
328 Disk write-protected
540 Invalid pathname syntax
$44 Path not found
$45 Valume not found
$46 File not found
547 Duplicate pathname
S4A Version error
548 Unsupported storage Lype
$4E Access: file not rename-enabled
350 File is open
$52 Unsuppored volume type
§57 Duplicate volume
558 Mot a block device

1148 Part lI: PreDO5 14 System Call Reference

SET_FILE_INFO ($05)

This function medifies the information in the specified file's
directory entry, The call can be made whether the file is open or
closed; however, any changed access atribules are not recognized
by an open file untl the next time the file is opened, In other words,

this call does not modify the accessibility of memory-resident
information

@ Node Current versions of Prol}05 16 ignore input values in the
create_date and create time felds of this function.

a - .
2 [pathramea - poirdar
al]
4
= [QCiCEss o wialug
& iy
7 [fila_typa - wvalue
a —
g 7]
al aux_type = wialue
A I
:'_:: o (ol field) = walug
b} ceote_dore 4 vaue
Ell I cragte_tima = waliie
? r~ mad_date = value
14 5
15 mad_time = VLB
SET_FILE_INFO ($05)
Parameter block

Chopter ¥ Flle Housekeeping Caolls ns

Parameler descriplion

Ofifset Labal

Description

$00-503 pathname

504-505 acceas

$06-507 file_type

$08-508 aux_type

parameter name: pathname
size and type: long word pointer (high-order byte sero)
range of values: 0000 0000-300FF FFFF

The long word address of 4 buffer. The buffer contains a length byte
followed by an ASCII string representing the file's pathname.

parameter name: ooess
size and type: word value Chigh-order byte zero)
range of values: $SO000-$00E3 with exceptions

A word whose low-order byte determines how the file may be

« accessed, The aceess byte's format is

B 1714
Volue D |RN

on

4falz2]17]o
redervad W [R

L)

wherne D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W= writc-enable bit
R = read-enable bit

and for each hit, 1 = enabled, 0 = disabled. Bits 2 through 4 are
reserved and must always be set o pero (dissbbed). The most typical
setting for the access byte is $C3 (110000113,

parameter name: [file ype
size and type: word value Chigh-order byte zero)
range of values: S0000-500FF

A number that categorizes the file by its contents (such as text file,
binary file, ProDOS 16 application). Currently defined file types
are listed in Appendix A

parameter name: auxiliary type
size and type: long word value Chigh-order word 2ero)
range of values: 0000 0000-$0000 FFEF

A number thal indicates additional antributes for cerain file types.
Example uses of the auxiliary type field are given in Appendix A,

120 Part Il: ProDO5 14 System Call Reference

Parameter description {centinued)

Oflset

Labal

Description

S0C-50D

SOE-3QF

510=-511

$12-%13

[Aull field)

create_date

create t ime

mod date

parameter name: {none)
size and type: word value
range of values: (undefined)

Values in this ficld are ignored,

parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. s format is

. Byte 1 Byia O
& Nshalaf2nfoje[8]76[5]4[3]Z]1]0]
Ve Year Manth | Day |

(Values in this field are ignored)

parameter name: creation tme
size and type: word value
range of values; limited range

The time at which the fle was created. Its format s
Byte | Byta D

& N1sTiaNaniz[nfo]e[e]7 (654 [afz]1]o
Vole: (O0f0][D f Howr oo Minute

(Values in this field are ignored,}

parameter name: modificalion date
size and type: word value
range of values: limited range

The date on which the fle was last modified. Its format is ideatical
o the create date formar

Byt 1 Byta O
at 15]1[13)i2(nfofeTa[7]&[5]4[3]2]1]0
Wialue: Year Manih Day

If the vilue in this field is zero, ProDOS 16 supplies the date
abtained from the sysiem cock,

Chopter 2: Flle Howsekeeping Colls 121

Parameter descriplion (conlinuad) GET FILE INFO (sm} =
Offsal Labal Cescriplion) = o=)
This function returns the information that is stored in the specified
$14-%1% mod_tims parameter name: modification tme file's directory entry, The call can be made whether the file is opan
size and type: word value or closed, However, if you make the SET FILE INFO call to
range of values: limited range change the access byte of an open file, the access information
The time at which the file was last modified. Its format is identical 1o ':‘_m”n;d by GET_FILE INFOmay not be accurate until the file is
the create time format rased.
Byte | Bvie D o[]
s [15[4[1af1[nfwoje 8|7 |sfs]4[3]2[1]0 IF polfiname - pointer
voue: [D|0|0| Hour |0]0 Minite 3]
: = aQCCess o rapult
If the value in this Geld is zero, ProDH05 16 supplies the time a1 fla tioa J resut
obtained from the system clack. 7l G e
= |— aux_type -
M or = risut
5 totolblocks S
Possible ProDOS 16 ermors o
= storoge_type o resut
07 PraD}5 is busy |
327 I/0 error El= create_date - resu
$2R Disk write-protected OL create_time o ress
540 [nvalid pathname syntax 1%
£44 Path nol found ;:1 r mod_dote = result
545 Volume not found 14 RS
. 3 2 r mod_ftime - resu
546 File not found 151 3 1
S4A Version error = ..
54B Unsuppored storage type A blocks_used - resut
$4E Access: file not write-enabled wl 1
$52 Unsuppored volume type
55 Invalid parameter GET_FILE_INFO (506)
£58 Mot a block device Paramater block
122 Part Il: FroDO35 14 System Call Refarance Chapter 9: Filke Housekeeping Calls 123

e ————

Parameter description

Offsel Lobel

Description

S00-503 pathname

F04-805 Beoess

506-507 fila typa

parameter name: pathname
slze and type: long word pointer (high-order byte 2era)
range of values: FO000 0030-300FF FFFF

The long word address of a buffer. The buffer contains a length byte
followed by an ASCI string representing the pathname.

parameter name: ac0css
size and type: word result Chigh-order byte zero)
range of values: 30000-$00E3 with exceptions

A word whose low-order byte determines how the file may be
atcessed, The access byte's format is

e [7]a]slafalz]n

Vol | D iFN‘ B i'—:-sen-'ed WIR

wherns D = destroy-cnable bit
BN = rename-enable bit
B = backup-necded bit
W = wrile-enable bit
R = read-enable bit

and for each bit, 1 = epabled, 0 = disabled. Bits 2 through 4 are
reserved and must always be set 10 zero (disabled). The most typical
serting for the access byte is $C3 (1100001 1.

parameter name: fle type
size and type: word result (high-order beyte pero)
range of values: S0000—500FF

A number that categorizes the file by its contents (such as text file,
birary file, ProDOS 16 application). Currently defined file types
are listed in Appendix A

124 Part |I: ProDOS 14 System Call Reference

Parameler descrptlon (continued)

Descriplion

Otfset Lobel
508-508 aux_type

o

total blocks
F0C-50D storage_type
SOE-30F create date

parameter name: auxiliary type
size and type: long word result (high-order word zera)
range of values: 0000 0000-50000 FFFF

A number that indicates additional attributes for cenain file types.
Example uses of the auxiliary type field are given in Appendix A

parameter name: (ol blocks
slze and type: long word result Chigh-order byte 2ero)
range of values: $0000 DODO—$00FF FFFF

I the call is for 2 volume directory file, the otal number of blocks
on the volume is returned in this field.

parameter name: SO Ype
slze and type: word result (high-order byte zera)
range of values: S0000-30000 with exceplions

A number that describes the logical erganization of the file (see
Appendix A):

500 = inactive entry

501 = zeedling file

502 = sapling file

503 = tree fike

504 = UCSD Pascal region on a panitioned disk
30D = directory file

& Note: S80F and S0F are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name: creation date
size and type: word resull
range of values: limited range

The date on which the file was created, Iis format is

Byte 1 Byt O
s [18[1a[1ahe[no[eJaf7]els]af3][2]1]0
Vialug Yaar | Month Day

Chapter @ File Howsakaeping Caolls 125

Parameter descrption (continued)

Offset

Label Dascription

$10-511

£12-513%

514-515

126

parameter pame: crealion Ume
size and type: word result
range of values: limited range

create time

The time at which the file was created. [1s format is

Byte |1 Byta
g [15[1a13[12[11]10]9[B] 7]6]5 d|.3i2|1j—l:l‘
value: Year hanth Cay

mod_date ‘parameter name: modification date
size and type: word result
range of values: limited range
The date on which the file was last modified. Its format is identical
(o the create date formal:
Byte | Byta O
ar [15[1a[a2[o[e (a7 [&s][5]4]3]2]! .:.,
Vel Yaar 1 Marith Day
mod_time parameter name: modificatdon tdme
= size and type: wird result
range of values: limited range

The time at which the file was last modified. Its format is identical 1o

the create_time format

Byher 1

Byte D

s [1ENapafiz[no]efe]7[s]5

vaue: [B]0[0] Hour ojo]

fafalzfijo
Mirvute

Bart Il: ProDO5 14 System Call Reference

§16-519

blocks used

parameter name: blocks used
size and type: long word result
range of values: $0000 0O00-SFFFF FFFF

The total number of blocks used by the file. It equals the value of the
bBlocka_used parameter in the files directory entry.

or

The total number of blocks used by all files on the volume GF the call
is for a volume directory),

Possible ProDOS 14 ermrors

07 Prolx05 is busy

$27 IO errar

§40 Invalid pathname syntax

$dd Path not found

545 Volume not found

546 File not found

S4A Version eror

54B Unsuppored storage type

552 Unsuppored volume type

553 Invalid parameler

558 Mol a block device
Chapter 9: Flla Housekeeping Calls 127

—
b s e s A s S b i Lt i 21

I:I - —
é - div_name = poirter
A g -
11 - —
5
sl vol_name - paintes
“ -
7
8
2
s total_blocks = resuit
o -
c - —
o
o fram_Blocks = r@ult
E = -
F
:? - files_svs_|d — sl

VOLUME ($08)
Porameater block

Parameter description

VOLUME ($08)
When given the name of a device, this function retumns:

o the name of the volume that occupies that device

01 the total number of blocks on the volume

O the current number of free (unallocated) blocks on the volume
0 the file system identification number of the volume

The volume name is returned with 2 leading slash (7.

To generate a list of all mounted volumes (equivalent 1o calling
OH_LINE in ProDOS 8 with a unit number of zera), cll VOLUME
repeatedly with successive device names (.D1, .D2, and so ond

“When there are no more online volumes o name, ProDO5 16

returns errof $11 Onvalid device request),

& Note In certain cases (for example, when polling Disk 11 drives)
ProDOS 16 cannot detect the difference between an empty
device and a nonexistent device. It may therefore assign a
device name where there 5 no device connected, just to make
sure it hasn't skipped over an empty device. Because of this, in
making VOLUME calls, vou may occasionally find that there are
more "valid® device names than there are devices on line

Cttset Lakel Descriplion

F00-503 dev_name parameter name: device name
size and type: long word pointer Chigh-order byte zero)
range of values: 30000 O0M-$00FF FFFF
The long word address of a bufTer. The buffer contains a length byte
followed by an ASCIH string representing the device name

§04-507 vol name parameter name: volume name
size and type: long word pointer Chigh-order byte zero)
range of values: 50000 0OO0-$00FF FFFF
The long word address of 2 buffer. The buffer contains a length byte
followed by an ASCII string representing the volume name
(including a leading slash)

128 Part 11: ProDOS 14 Syetem Coll Referance

Parameter descriplion {continuad)

Oftsel

Labal Descripfion

J0B-508 total blocks parameter name: (otal blocks
size and type: long word result (high-order byte zero)
range of values: FO000 0000-300FF FFFF
The total number of blocks the volume contains

S0C-30F free_blacks parameter name: [free hlocks
size and type: long word resull thigh-order byte zero)
range of values: FO000 K000-300FF FFFF
The number of free (unallocated) blocks in the volume

$10-511

file ays id

parameter name: file system [D

slze and type: word result Chigh-order byte zera)
range of values: $O000-S00FF

A word whose low-order byie identifies the fle system (o which the

specified file or volume belongs, The cummently defined file syslem
identification numbers inchude

0 = [reserved)

1 = PraDOs/S05
2=DOS 33
3=D0O532 31

4 = Apple 1T Pascal

5 = Macintosh

6 = Macintash (HFS)
7 = LISA®

8 = Apple CP/M
9-255 = {reserved]

Chapter 9: Fla Housskeeping Calls 129

a0

Possible ProDOS 146 ermrors

$07
510
$11
327
428
JZE
$2F
540
545
F4a
$52
555
857
358

ProDO5 is busy

Device not found

Inwalid device request
LAY error

No device connected
Disk switched: files open
Device not on line
Invalid pathname
Volume not found
Version error
Unsupponed volume type
Volume control block full
Duplicate volume

Not a block device

Pot 1 PraDOs 14 System Coll Referance

SET_PREFIX ($09)

This function assigns any of B prefix numbers to the pathname
indicated by the pointer prefix A prefic number consisis of a
digit followed by a slash: 0/, 1/, 2/, 7/. When an
application starts, the prefixes have default values that depend on
the manner in which the program was launched. See Chapler §
It input pathname to this call may be
1 a full pathname
4 partial pathname with a prefix number. The trailing slash on
the prefix number is optional
I a partéal pathname with the special prefix number */ (asterisk
slash}, which means *boot volume name.® The trailing stash is
oplional
1 4 partial pathname without a prefix number, In this case ProDOS
16 does mot atach the defaylt prefix {number 0/, Instead. it

appends the input pathname to the prefix specified in the
prefix num feld

¢ Note: This method can be used o append a partial pathname o
an exisiing prefix only. If the spedified prefix is presently null,
error $40 (invalid pathname syntax) is returned.

Specifying a pathname whese length byte is zero, or whose synax is

itherwise illegal, sets the designated prefix to null (unassigned)

¢ Note: ProDOS 16 does nor check to make sure that the
designated volume is on line when you specify a prefix; it only

checks the pathname string for correct synlax.

e boot volume prefix (%9 cannot be changed through this call

SET_PREFIX ($0%)
Farameater block

Chapler 9: Fle Housekeeping Calls 131

e —

Farometer description

offset Labed

SO0-%01 prefix_num

$02-505 prefix

Dascription

parameter name: prefic number

size and type: word value

range of values: SO000-F0007

One of the 8 prefix numbers, in binary (without a lerminating
slash)

parameter name: prefix)
size and type: long word pointer (high-order byle zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a length byte

‘followed by an ASCII string representing 3 directory pathmame

Possible ProDOS 146 ermrrors

507 PralOs s busy
sS40 Invalid pathname syniax
553 Parameter out of range

132 Part Il: PraDOSs 14 Systam Coll Reference

B prafix_num - volue

- crells ~ poirdar

B Lo B — O

a

GET_PREFIX (50A)
Porameter block

Parameter description

GET_PREFIX (30A)

This function returns any of the current prefives (specified by
number), pacing it in the buffer pointed to by prefix, The returned
prefix is bracketed by slashes (such as /APFLE/ or
/APPLE/BYTES/). If the requested prefix has been set o null (see
SET_PREFIX), a count of zero s refurned as the length byte in the
prefix buffer

The boat valume prefix (*/) cannot be returned by this call
Instead, use GET_BOOT_VOL to find the boot volume's name,

Oflset Label

Description

prefix num

§02-505 predix

parameter name: prefix number
size and type: word value
range of values: S0000-50007

One of the 8 prefix numbers, in binary (withoul a terminating
slash).

parameter name: prefix
size and type: long word pointer (high-order byte zero)
range of values: S0000 OO00—S00FF FEFF

The long word address of 2 buffer, in which ProDOS 16 places a
length byte followed by an ASCII string representing a directory
pathname

Possible ProDOS 16 emrors

507 PraDO5 s busy
553 Parameter out of range

Chopter 2 Flle Howsskeeping Caolls 133

CLEAR_BACKUP_BIT ($0B) Chapter 10
This is the only call that will clear the backup bit in a file's access —_—
byte, Once cleared, the bit indicates that the file has not been e e

altered since the last backup. ProDOS 16 automatically resets the

backup bit every time a file is allered, File Access Cq"s

important Only disk backup programs should use this function|

k pathrome = paintar

LA kg = O

CLEAR_BACKUP_BIT (508)
Parameater block

Parameter descriplion

Ctiset Label Description
300-503 pathname parameter name: pathname
size and type: long word polnter (high-order bytle zero)

range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a length byie
followed by an ASCII string representing the file’s pathname.

Possible ProDOS 16 ermrors

507 ProDO8 is busy

540 Invalid pathname syniax I

544 Path not found

§45 Volume not found

546 File not found

SdA Version error

§52 Unsupported volume type

358 Not 2 blodk device .:
134 Part Il: ProDOs 16 Systam Call Reference

—

134

These might be called "open-fle” calls. They are made (o access
and change the information within files, and therefore in most
cases the files must be open before the calls can be made

The ProDOS 16 file access calls are described in the following

order:

Humber FuncHan Purpnu.
510 OPEN

311 NEWLINE
J12 READ

$13 WRITE

514 CLOSE

+515 FLUSH

516 SET_MARK
317 GET_MARK)
$18 SET EOF
519 GET_EQF
§1A SET_LEVEL
31B GET LEVEL

Part Il ProD0s 14 System Call Reference

prepanes file for acoess
enables newline read mode
transfers data from [ile
transfers data to file

ends zccess (o file

empiies 'O bufler to e
sels current position in file
returns current position in file
sots size of file

returns size of file

scls system file level
returns system file level

raf_num = resull

|

l&_buffer
result

O OB s Ok OF Ba D RS — O

T
S I |

QPEN (510}
Parcmeter biock

Parameter descriplion

= pathnome - pointes

OPEN ($10)

This function prepares a file 1o be read from or written 1o, I creates
a file control block (FCB) that keeps track of the current
characteristics of the file specified by pathname. It sets the current
position in the file (Mark) (o 2ero, and returns a reference number
Cref_num for the file; subsequent file access calls must refer to the
file by its reference number. It also retums @ memory handle 1o a

1024-byte 1/O bulfer used by ProDOS 16 for reading from and
writing (o the file,

Up to & files may be open simultaneously

® Note: Normally, attlempting to open a file that is already open
cpuses an emror ($500. However, if a file is not write-enabled, it
may be opened more than once

Cifset Labsal

Descripiion

S00-501 ref num

502-505 pathnames

S6-309 lo buffer

parameter name: reference number

size and type: word resull Chigh-order byte zero)
range of values: $0001-500FF

An identifying number assigned to the file by PraDOS 16. It is used
in place of the pathname in all subsequent file acoess calls,
parameter name: pathname

size and type: long word pointer (high-order byte zero)
range of values: S0000 O000-S00FF FFFF

The long word address of @ buffer, The buffer contains 2 length byte
followed by an ASCII string representing the pathname of the file o
apen,

parameter name: 10 buffer

size and type: long word result thigh-order byte zero)
range of values: S0000 OO00-S00FF FFFF

A memary handle, It points to a location where the address of the
1 buffer allocated by ProDOS 16 is stored.

Chapter 10 Flle Access Calls 137

Possible ProDOS 16 errors

07 Prold05 is busy

527 /0 error

540 Invalid pathname synlax

542 File controd block table full

544 Path not found

£45 Volume not found

46 File not found

S4A Version error

348 Unsupported storage tvpe

§50 File is open

£52 Unsuppored volume type
138 Part i: PraDOs 16 Systermn Call Refarence

NEWLINE ($11)

This function enables or disables the newline read mode for an
apen file. When newline is disabled, a3 READ call {described next)
terminates only when the requested number of characters has been
read (unless the end of the file is encountered first), When newline
is enabled, the READ will also termingte when & newline character
(as defined in the parameter block) is read

Whena READ call is made and newline mode is emabled,

1. Each character read in is first transferred to the user's data buffer

2. The character is ANDed with the low-order byte of the newline

enable mask (specified in the NEWLINE call's parameter block)
3. The resull is compared with the low-order byte of the newline
chiracter
4. IF there is a match, the read is ferminated,
The enable mask is typically used to mask off umwanted bits in the
character that i read in. For example, if the mask value is $7F
(binary 0111 1111, a newline character will be corectly matched

whether or not its high bit is set. I the mask value is $FF (1111 1111,
the character will pass through the AND operation une hanged

Newline read mode is disabled by setting the enable mask (o $0000

.i - ref_num -'! result
alF enable_mask WS
= [h newline_cha value

NEWLINE (511}
FParometer block

Chapter 10: Fle Access Calis 139

Parameter description

[=1{IT 1) Lobel Dasc ri!;!Hnn 3
§00-801 ref num parameter name: reference number
size and type: word result thigh-order byte zero)
range of values: $0001-$00FF
The identifying number assigned to the file by the OPEN funcion.
S02-503 enable_mask parameter name: enable mask
size and type: word value (high-order byte zero
range of values: S0000-500FF
The current character is ANDed with the low order byte of this word
S04-505 newline char .parameter name: newline character
size and type: word value Chigh-order byte zero)
range of values: S0000-500FF
Whatever character occupies the low-order byte of this field is
defined as the newline character.
Possible ProDOS 16 errors
507 ProDOS is busy
543 Invalid reference number
140 Part Il: Pral05 16 Systemn Call Reference

READ ($12)
When called, this function amempts to transfer the requested
number of bytes (starting at the current positdon of the file specified
by ref num) into the buffer pointed to by data_bfer. When

finished, the function returns the Aumber of brytes actually
transfered

IT, during a read, the end-of-file is reached before Teqest_cotir
bytes have been read, transfer count i set to the number of
bytes transfered, If newline mode is enabled and 2 newline
character is encountered before request_coustt bytes have been
read, tranafer count is set to the number of bytes ransferred
(ncluding the newline byte),

No more than 16,777,215 ($FF FF FF) bytes may be read in 3 single
call ' '

=
' I~_ raf_num —J wolue

2 e

o -

; = dota_Dauffeer = poaribar
5 -

&

. ragquest_cowunt = WVidlLsl
sk E

A

B]

g f whar count T
cr ransfar_coun :| esult
READ (512)

Parometer block

Chapter 10: Fla Access Calis 141

I ———l |

Paromeler descriplion

Offsal

Label Dwscription

S00-501

502-50%

$06-509

S0A-30D

142

ref num parameter name: reference number
slze and type: word value Chigh-order byte zera)
range of values: $0001-800FF

The identifying number assigned to the file by the CPEN function

data buffer parameter name: dai buffer
size and type: long word pointer Chigh-order byte zerm)
range of values: $0000 0000-S00FF FFFF

The long word address of a buffer, The buffer should be large
encugh o hold the requested data

request_count paramMeter NAmMe: request count
slze and type: long word value Chigh-order byte zera)
range of values: $0000 0000-S00FF FFFF

The number of bytes to be transferred
tranafer count parameter name: transfer count

size and type: long word result (high-order byte zerc)
range of values: S0000 0000-S00FF FFEF

The acual number of bytes transferred

Possible ProDOS 16 errors

507 ProlMD5 is busy

327 Ly error

§43 Invalid reference number

$4C EOF encountered (Out of data)
$4E Access: file not read-enabled

Part Il: PraDO5 14 System Coll Reference

WRITE ($13)

When called, this funciion attempts to transfer the specified
rumber of bytes from the buffer pointed 1o by data_buffer to the
file specified by ref mum (slaring at the current positon in the
file). When finished, the function remms the number of bytes
actually transferred.

After @ write, the current file position (Mark) is increased by the
transfer count. If necessary, the end-of-file (FOF) is extended (o
accomodate the new data,

Mo more than 16,777,216 ($FF FF FF) bytes may be wrilten in a
single call.

0

Y ref_num = wolus
? —

3 -

i data_bufler = painter
5 -

*'}-“ L i

o - mequest_count = walue

E - -

A

al .

C I transfer_count e LT

= -

WRITE (513)

Parameter block

Chapter 10: Flle Accass Calls 143

S SES———

Parameler description

Oftsael

Lk Description

300-501

502-505

S06-509

L0A-50D

144

ref _num parameter name: reference number
a size and type: waord value Chigh-order byte zerc)
range of values: $0001-300FF

‘I'he identifying number assigned to the file by the OPEN function

data buffer parameter name: dxa boffer
- size and type: long word painter Chigh-order byte 2ero)
range of values: S0000 0000-S00FF FFTF

The long word address of & buffer, The buffer should be large
enough to hold the requested data.

request _count parameter name: fequest coumt :
size and type: long word value (high-order byue zero)
range of values: $0000 0000-S00FF FFFF

The number of bytes o be transferred

tranafer count parameter name: transfer count
slze and type: long word result (high-order byte zero)
range of values: SO000 DOD0-SD0FF FEFF

The actual number of bytes transferred

Possible ProDOS 14 arrors

507 ProDd{5 is busy

$27 1/0 error

$2B Diisk write-peotecied

£43 Invalid reference number
§48 Volume full

S4E Access: file not write-enabled
3$5A Block number out of range

Part i PraDOS 16 Systern Call Reference

Porameter description

CLOSE ($14))

This fundtion is called 1o release all resources used by an open file
and terminate further access o it The file control block (FCB) is
released; if necessary, the file's 1/O buffer is emptied (wrillen to
disl} and the directory entry for the flle is updated. Once a file is
closed, any subsequent calls using its zef num will fail (uneil that
number is assigned to another open file),

If the specified ref_num is 0, all open files at or above the current
file level (see SET LEVEL and GET_LEVEL calls) are closed. For
example, I files are open at levels 0, 1, and 2 and you have set the
current level 1o 1, a CLOSE call with ref num set 1o O will close ail
files at levels 1 and 2, but leave files at level 0 open,

[u]
1 raf_ridm walisa

CLOSE ($14)
Parameter block

Ofisel

Label

Description

S00-501

ref_num

parameter name: reforence number

slze and type: word value Chigh-order byte sera)
range of values: $0000-$00FF

The idemtifying number assigned to the file by the ©PEN function

Possible ProDOS 16 ermrors

507 PraDOs is busy
£27 LA error
528 Diisk wrile-protected
543 Invalid reference number
35A Block number out of range
Chapter 10: Fle Access Colls 145

Parameler description

FLUSH ($15)

This function is called to empay an open file's buffer and update its
directory, If zef_num is zero, all open files are flushed.

& Nate; Current versions of ProDOS 16 ignore ref_mum in this
call The FLUSH call Aushes all open files

r[t raf_num -I value

FLUSH ($15)
Parameter block

offsat Label Descriphion
$00-501 ref num parameter name: reference number
o slze and type: word value (high-order byte zera)
range of values: S0000-500FF
The identifying number assigned 1o the file by the OPEN funcion.
Possible ProDOS 16 errors
07 ProDOS is busy
527 I/D error
28 Disk write-protected
543 Invalid reference numbser
548 Volume full
$5A Block number out of mnge
144 Part Il: PralOs 146 Systemn Call Referance

Parameter description

SET_MARK ($16)

For the specified open file, this function sets the current position
(Mark, the position at which subsequent reading and writing will
ocour) o the point specified by the position pammeter, The value
of the current position may not exceed EOF (end-of-file; the size of
the [ile in bytes).

I~ ref _mum = volua

Ba G B — T3

I~ position = valus

]

SET_MARK ($18)
Parametaer béock

Offset Lobel Descripiion
$00-301 ref _num parameter name: reference number

size and type: word value Chigh-order byte zera)

range of values: $0001-400FF

The identifying number assigned to the file by the CPEN function
$02-505 position

parameter name: position
size and type:
range of values:

long word value Chigh-order byte wero)
$0000 D000-$00FF FFFF

The value assigned to Mark. It is the position, In bytes relative to the
beginning of the file, a1 which the next read or write will occur

Possible ProDOS 16 errors

507 ProD(S is busy
527 /0 error
543 Invalid reference number
54D Posilion out of range
55A Block number out of range
Chapher 10: Flle Access Calls 147

et

b
GET_MARK ($17) SET_EOF ($18)
This function returns the current position (Mark, the posilion st # For the specified file, this function sets its logical size (in bytes) 1o
hich subse i reading and writing will oecur) for the specified B ref_num - walue OV i i
which subsequen B 1 the value specified by EOF (end-of-file}. If the specified EOF is less
open file. ; B - than the current EOF, then disk blocks past the new EOF are released
al eof < value tothe system and index-block pointers 1o those blocks are 2croed.
5[I However, if the specified EOF s equal to or greater than the current
2 }- ref_num = walue EOQF, no new blocks are allocated until data are actually written 1o
1 SET_EOF (§18) them.
i - -1 Parometer block
F posttion = volue The value of EOF cannot be changed unless the file is write-enabled
GET MARK ($17) Porameter description
Paramater biock y = —
Offsel Label Dascription
$00-501 ref num parameter name: reference number
Parameler description N sixe and type: ward value (high-order byte zero)
oftset Lobel Description range of values: 50001-500FF
ur’ nxees polesence oumber The identfying number assigned to the file by the CPEN function.
FO0-501 ref num parame : T ~
size and type: word value (high-order byte zero) $04-507 eof parameter name: end-of-file
range of values: $0001-$00FF size and type: long word value (high-order byte zera)
) range of values: S0000 OO000-S00FF FFFF
The identifying number assigned to the file by the OPEN function. BE 0]
ielom The specified logical size of the file. Il represents the total number of
502805 poaition parameler name: posii bytes that be read fi the file,
slze e type:]nng R 'L'I'Ligh-urdr.'r b',.'l:r_‘ zere) Vies thal may read mom the [
range of values: $0000 0000-S00FF FFFF
The current value of Mark. It is the position, in bytes relative 1o the = .
beginning of the file, at which the next read or write will occur Possible ProDOS 16 errors
307 Prol¥05 is busy
327 /0y error
= = 543 Invalid reference number
Possible ProDOS 16 errors 54D Position out of range
807 PraDOS Is busy S4E Access: file not wrile-enabled
543 Invalid reference number $34 Block number out of range

148 Part II; ProDOS 16 Systemn Caoll Referance

Chapter 10: File Access Calls 149

GET_EOF ($19)

{ i i i its logical size, of
For the specified cpen file, this function retums ils .
EOF (end-of-file; the number of bytes that can be read from it).

of ref_riem - ‘alue
2 [{]

j = ol = result
11 -
GET_EOF (519}

Poromeater block

Poromeler descripiion

SET_LEVEL ($1A)

This function sets the current value of the system file level (see
Chapter 2). All subsequent OPEN calls will assign this level to the
files opened. All subsequent CLOSE calls for mueltiple files (that is,
those calls using a specified ref num of 0) will be effective only

on those files that were opened when the system level was grealer
than or equal o the new level,

The range of legal system level values is $0000-300FF. The file level
initially defaults to wero

I:l: P HEg q WOl

SET_LEVEL (51A)
Parometer bock

Offsal Label Description — Poromeler descriplion
. arameter name: reference number
500-501 ref rnuam :'llz Forh word value (high-order byte zerc) Otfset Label Description
range of values: $0001-500FF _ S00-501 laval parameter name: sysiem file level
The identifying number assigned 1o the file by the OFEN [unction size and type: word value Chigh-order byte zero)
$04-307 eof parameter name: end-of-file ; Epec T, Tanb-ey
size and type: long word result Chigh-order byte zero) The specified value of the system file level
range of values: $0000 0OC0-$O0FF FFET
The current logical size of the file. It represents the total number of o s
bytes that may be read from the file Possible ProDOS 16 errors
507 ProDOS is busy
- §59 Invalid file level
Possible ProDOS 16 errors
307 Prol¥0S is busy
543 Invalid reference number
Chaptaer 10: File A Call 151
150 Part II: ProDOS 14 System Coll Reference . i

Parameler descriplion

Oftset

500501

152

Lokl

GET_LEVEL ($1B)

iz function returms the current value of the system file level (see
Chapier 23 All subsequent OPEN calls will assign this level to the
files opened. All subsequent CLOSE calls for mudrigde files (that is,
those calls using a specified ref_oum of 0} will be effective only on
those files that were opened when the system kevel was greater than
of equal to its current level

OF ot e

GET_LEVEL ($18)
I-;qunmafar block

Dascription

lavel

Part Il: ProlOs

parameter name; system file level
shze and type: word result (high-order byte sero)
range of values: SO000-500FF

The carrent value of the system file level,

Possible ProDOS 16 erors

307 ProlMD5 is busy

16 System Call Refarence

Chapter 11

Device Calls

&

Device calls access storage devices directly, rather than through the

logical structure of the volumes or files on them {;_ET_DEU_NUM (55}

The PraDO5 16 device calls are described in the following order: af] ... Forthe device specified by name or by the name of the volume
10 i e i PEE! mounted on it this function retums its device number. All other
o = device calls (except for FORMAT) must refer to the device by its
Mumber Functlon Purpose 4 PR] regult number,

: : : e 5 = Device numbers are assigned by ProDOS 16 at system starup (boot)
320 GET_DEV_HNIM PeRE GET_DEV_NUM ($20) time. They are consecutive integers, assigned in the order in which
521 GET_LAST_DEV remurns the last device Paramater block ProDOS 16 polls external devices (see Chapter 43,

aceeased % Note: Because a device may hold different volumes and
522 READ BLOCK transfers 512 bytes from a because volumes may be switched among devices, the device
device number returned for a particular volume name may change,
. Likewise, the volume name assoclated with a particular device
T b 1 2 bytes 1o & device
5§23 WRITE BLOCK transfers 512 byles o a fiumber may change
524 FORMAT formats a volume in a device

Parameter description

Oifsel Labasl Dascription
$00-503 dev_name parameter name: deviee name/volume name
size and type: long word pointer Chigh-order byte zera)

range of values; S0000 0O00-S00FF FFFF

The long word address of a buffer, The buffer contains a length byte
followed by an ASCI string representing the device name or the
volume name.

S04-505 dev_mum parameter name: device number
slze and type: wiord result (high-order byte 2ero)
range of values: S0000-200FF

The device's reference number, to be used in other device calls

Possible ProDOS 16 ermrors

o7 ProDO5 is busy

510 Device not found

511 Invalid device request

$40 Invalld device name syniax
545 Volume not found

11+ Davie) 15
154 Part Ii: PraDOS 14 Sysfem Call Referance Chapter 11: Device Calis 55

Parameter description

GET_LAST_DEV ($21)
This function retums the device number of the last device accessed.

The last device accessed is the last device to which a command was
directed that caused a read or wrile [0 0oour

1

GET_LAST_DEV (521}

Offsatl

Lobel

Dasctiption —_—

$00-501

156

da v_num

arameter name: device number
giu and type: word result (high-ordes byte zera)
range of values: F0000-300FF

The device's reference number, to be used in other device calls

f-‘nﬁEln F_'EDE}S ;ié aﬁ-dls

07 ProDOS is busy
560 Data unavailable

Part Il PraDOs 16 Systermn Caoll Referance

Parameter description

Cifset Label

S00-501 dev_num
502305 data buffer
S06-509 block num

READ_BLOCK (522)

This function reads one block of information from a disk device
(specified by dev_mum) inlo memory starting at the address
pointed 1o by data buffer. The buffer must be at least 512 bytes in
length, because existing devices define a block as 512 bytes

I'?- - diy_rim - valua

-4 |

3

al dota_puffer =1 Poinrer
s R

&

al Diock_num = valua

¥

READ_BLOCK (522
Parameter block

Descriplion

parameter name: device numbser

size and type: word value (high-order byie zero)

range of values: FOO00-S00FF

The device's reference number, as returned by GET_DEV_NUM.

parameter name: data buffer
size and type: long word pointer Chigh-order byte zero)
range of values: S0000 OO0=$00FF FFFF

The long word address of a bulfer that will hold the data 1o be read
in

parameter name: block number
size and type: long word value Chigh-ocder word zero)
range of values; S0000 DO00=-50000 FFFF

The number of the block to be read in,

Chapter 11: Davice Calls 157

Possible ProDOS 14 ermors

so7
511

527
$28
$2F
$53

PraDO8 is busy

Invalid dewvice request
Ly error

No device connected
Device not on line
Parameter out of range

Part Il: PraDOS 146 Systemn Call Reference

= dev_num = value

data_buffer = pointer

= Dlock_rum = walus

O e O CP B Dk R — 3

WRITE_BLOCK (§23)
Paramater block

Parameler descripllon

WRITE_BLOCK ($23)

This function transfers one block of data from the memory buffer
pointed to by data_ buffer to the disk device specified by
dey_num. The block is placed in the specified logical block of the

volume occupying that device, For currently defined devices, the
data buffer must be at least 512 bytes long.

Offsat Label Dwescription
§00-$01 dev_num parameter name: device number

size and type: word value Chigh-order byte zerc)

range of values: 30000-500FF

The device's reference number, as returned by GET_DEV_NUM.
502-505 data buffer parameter name: daia buffer

size and type: long word pointer (high-order byte wera)

range of values: $0000 0000-300FF FFFF

The long word address of a buffer that holds the data o be writen.
506-509 block _num parameter name: block number

size and type: long word value (high-order ward zera)
range of values: 30000 0000-$0000 FFFF

The number of the blodk to be writien o,

Possible ProDOS 16 errors

507 ProDOS is busy

5N Invalid device request
527 IOy errar

$28 No device connected
328 Disk write-protected
§2F Device nol on line
533 Parameter out of range

Chapter 11: Davice Calls 159

Parameler description

FORMAT ($24)

This function formats the volume (disk) in the specified (by name)
device, giving it the specified volume name. The volume is
formaned according to the specified file system ID

@ Npie: Current versions of ProDOS 16 supporst formatting for the
Prold5/505 file system only (fle system ID = 1). Specifying
any other file system will generate error 550

oL o pointar
:'! r dev_name .

i 3 7 poirtar
5 e 4l

A : vol_mome ¥

? volue
B b -

of file_sys_ld

FORMAT ($24)

Paramater block

Ofiset Lobal Descriptlon

200-503 dev name parameter NAame: device name
size and type: long word pointer Chigh-order byte zero)
range of values: £0000 0OM0-$00FF FFFF
The long word address of a buffer, The buffer contains a length byie
followed by an ASCH string representing the device name

$04-507 vol name parameter name: volume name
slze and type: long word pointer (high-order byte zero)
range of values: 0000 Q000—300FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the volume name
(including a leading slash).

140 Part Il: PraDOS 14 Systen Coll Reference

SO8-500

file ays

parameter name: fie system [D
size and type: word result Chigh-order byte zero)
range of values: $0000-300FF

A word whose low-order byte identifies the file system to which the
formatted volume belongs. The currently defined file system
identification numbers include

0 = {reserved)

1 = Proldds/5085
2=D533
3=D05 3.2 3.1

4 = Apple I Pascal

5 = Macintosh

6 = Macintosh (HFS)
7 = LISA

B = Apple CP/M

Possible ProDOS 16 errors

$07 ProDO5 is busy
§10 Device not found
511 Invalid device request
327 I/C error
55D File system nol available
Chapter 11: Device Calls 141

aapterﬁ

Environment

Calls

164

These calls deal with the Apple [1G3 cperating environment, the
software and hardware configuration within which applications run
They include calls to start and end ProDOS 16 applications, and 1o
determine pathnames and versions of system software

The ProD¥05 16 envirenment calls are described in the following

order:

Humbaer

$28

329
SIA

Function

Pumpose

GET_NAME

GET_BOOT_VOL

QuIT

GET_VERSICOHN

Part Il: PralDO5 14 System Call Refarence

returns application filename

returns ProDOS 16 volume
name

lerminates present application

returns. ProDOS 16 version

GET_NAME ($27) GET_BOOT_VOL (528)

This function returns the filename of the curently running This function refurns the name of the volume from which L’h.r.- file
application narmed PRODOS was last executed. PRODOS is the operating
system loader; it loads both ProDOS 16 and ProDOS 8 into

To get the compete pathname of the current application, wse memory. Execution of PRODOS may ocourr

GET_PHEFIX for prefix number 1/, and affix that prefix to the file

mame retumed by this call ik Ll P
@ MNote: If your program uses SET_PREFIX to reset prefix 1/ o 5 s 0
anything other than ils initial value, be sure it first uses O by execution from an Applesolt BASIC dash (—) command

GET_PREFIX on 1/ and saves the results. Otherwise there may
be no way to recover the full pathname of the current
application

O by loading PRODOS into memory at 002000 and execuling a
JMP 1o that address

The volume name returned by this call is identical to the prefix
specified by */, See Chapler 5

o
1

al data_oufter = Pt
al i F 5

‘_"- data_buffer = paintar
GET_NAME (527) il]
Parameter block :

GET_BOOT_VOL (528)

Farameter block
Porameler description

Oifsel Labal Daseriphon Parameter descripllon

§00-503 data_buffer parameter name: data buffer on“r. Label Description
slze and type: long word pointer Chigh-order byte zero) N F
range of values: $0000 0000-$00FF FFFF $00-$03 data buffer parameter name: data buffer
_ - type: int igh-order byte zero)
Ihe long word address of a buffer, The buffer contains a length byte Sk sna o Ry e

followed by an ASCID string representing the current application’s range of values: $0000 DOO0—$00FT FFFF
file name The long word address of a buffer. The buffer contains a kength by
followed by an ASCII string representing the boot volume's name,

Possible ProDOS 16 emors

07 Prolx25 is busy Rossibie FrOOS 16 oo
07 ProD05 is busy
Chapter 12: Environment Calls 145 184 Part Il: PreDOs 14 System Call Reference

e S L —

QUIT (529)
Calling this function terminates the present application. It also
closes all open files, sets the current system file level to zero, and

deallocates any installed interrupt handlers, Prold05 16 can then
do one of three things:

0 launch a file specified by the quitting program

0 launch a file specified by the user

O automatically launch a program specified in the quit return stack
The guit return stack is a table maintained in memory by

ProDOS 16. It provides & convenient means for a shell program to
pass execution (o subsidiary programs (even other shells), while
ensuting that control evenmally retums to the shell,

For example, a program selector may push its User ID onto the quit
return stack whenever it launches an application (by making a QUIT
call). That program may or may not specify yet another program
when it quits, and it may or may not push its own User 1D onto the
quit return stack. Eventually, however, when no more programs

have been specified and no others are waiting for control (o return

to them, the program selector's User 1D will be pulled from the stack
and it will be executed once again

Two QUIT call parameters control these options, as follows:
1. Pathname pointer:

a. If the pathname poinler in the parameter block points 10 a

pathname of nonzero length, the indicated program Is loaded
and executed

b. Il pathname is null (zero) or if it points to a null pathname
(one with 3 zere length byted, ProDOS 16 pulls a User 1D from
the quit return stack and executes the program with that 1D

c. If pathname is mull and the quit return stack is empty,
ProDOS 16 executes a buill-in interactive dispatcher that
allows the user 1o

0 reboot the computer
O execute the file SYSTEM/START on the bool disk

0 enter the name of the next application w launch

Chapter 12: Envirenrment Calls 167

o pathnome

h B G 83 — O3

" Mogs

QUIT (529
Parameater block

palnter

walua

2. Flag word:

The flag word contains two boolean values: a retsrn flag and a

restart-from-memory flag.

4. If the return flag value is TRUE (bit 15=1), the User D r:-.F1.h:
program making the QUIT callis pushed onto the quit rewm
stack, If the return flag Is FALSE, no ID is pushed onlo the
stack.

b. If the value of the restart-from-memory flag is TRUE {bit
14=1), the program is capable of being restarted from a
dormant state in the computer's memory, I the restart-frome
memary flag is FALSE, the program must always be rclw:d.ed
from disk when it is ren, Every time a program’s User ID s
pushed onto the quit rem stack, the information from this
flag Is saved along with it. The System Loader uses this
information when it reloads or restarts the program later
(see Chapter 170

& Note: The pathname designated in this call may be a prartial
pathname with an implied or explicit prefix number, Howeves,
the total length of the expanded prefix (the full pathname
except for the file name) must not exceed 6 characters. Other
PraDOS 16 calls do not restrict pathname length as severely.

Further details of the operation of the QUIT function are
explained in Chapter 5.

168 Part Il; PreDOS 16 System Call Referance

PForometer descriplion

Offset Label Description

$00-503 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: S0000 O000-S00FF FFFF
The long word address of a buffer, The buffer contains a length bye
followed by an ASCII string representing the pathname of the next
file to execute.

504-305 flags parameter name: flag word

size and type: word value
range of values: $0000-5C000

Twa boclean flags in a 16-bit field. The bits are defined as follows:

bit significance
15 if = 1, place calling program’s
User I on return stack
14 il = 1, calling program may be
restarted fromm memory
13-0 (reserved)
Chaopter 12: Enwlronment Calls 149

$07 ProDOS is busy

540 Invalid syniax

§dh File not found

55C Not an executable file

35D Operaling sysiem not available
$5E Cannot deallocate /RAM

$5F Return stack overflow

Possible ProDOS 16 errors
QUIT never renurns to the caller, Therefore, it cannot return an
error, However, other parts of ProlO6 16 may. For example, if an
interrupting program (such as a desk acoessory) ignores established
conventions and uses 3 QUIT call, error 307 (ProDOS s busy)
may oocur. For programming rules covering such specialized
applications, see Programmer's Introduction i the Apple HGS.

If a nonfatal ermor ocours, execulion passes 1o an interactive rouling
that allows the user 1o select another program o launch. Ermors that
may cause this include:

Fatal efrors cause execulion 10 hale For example, If the oUIT call
results in the loading of 3 ProDOS 8-based application, and if the
system disk has been aliered with a different version of ProDOS &
(file PB), it is a faral error ($11). Execution halts and the following
message is displayed on the screen:

Wrong 05 wersion 50011

IFthe QUIT cill results in the loading of 3 ProDOS 16-based
application that is too large 1o fit in the available memory or that for
some other reason cannot be loaded, execution halts and the
following message {5 displayed on the screen

can’t run next application. Error=S5XXXX

where SXXXX s an error code—iypically a2 Tool Locator, Memary
Manager, or System Loader error code

Part |I: ProDOs 16 System Call Referance

GET_VERSION ($2A) ' Chnp_fer 13

This function retums the version number of the currently running
ProDOS 16 operating system

The returned version number is placed in the version parameter Inferrupt Con'rOI Cu"s

i Both byte and bit values are significant. It has this format
Byte | Bytal
F chalialetinhnlo el " i
I o3| a|7isa|slalalzg 0
Viave: | B | Mojor Release No Minor Release No

Byie 0 is the minor release number { = 0 for ProDOS 16 version 1.00
Byte 1 is the major release number ¢ = 1 for ProDOS 16 version .07 I
B {the most significant bit of byte 1) = 0 for final releases

= 1 for all prototype releases

GET_VERSIOM (52A)
Parametear block

Parameler descriplion

Gftsel Labed Description

S00-501 veraion parameter name: version
| size and type: word result Chigh-order byte pero)
| range of values: S0D00-5FFFF

The version number of PraDOS 16

Possible ProDOS 16 errors
07 Proli0s i3 busy
|
173
Chopter 12: Envirenment Calls 171

These calls allocte and deallocate interrupt handling routines,

The Pral}05 16 interrupt control calls are described in the ALLDC_INTEREUPT {$3 1)

following order: | This function places the address of an interrupt-handling routine
into the interrupt vector table. You should make this call before
enabling the hardware that can cause the interrupt. 1t is your

Mumber Function Purpose responsibility to make sure that the routine is installed at the proper
| location and that it follows interrupt conventions (see thapl.cr 7.
LLOC INTEREUPT alls an interrupt handlers)
¥ ALLOG INTERENES s P | Ihe returned int _num s a reference aumber for the handler. Its

£32 DEALLOC INTERRUBT removes an interrupt handler | only use is 10 identify the handler when deallocating ity you must
refer to a routine by its interrupt handler number to remove it from

?_ T o reeut the system (with DEALLCC INTERRUPT)
2 i When ProDO5 16 receives an interrupt, it polls the installed
a - int_code - painter handlers in sequence, according to their order in the intermupt
i F - vector lable. The first handler installed has the highest priority,
Each new handler installed is added to the end of the table; each
ALLOC_INTERRUPT (531) one deallocated is removed from the list and the rable is
Parameter block compacted
Note: Under ProDOS 8, the interrupt handler number is equal
o the handler's position in the polling sequence, By contrast,
the value of int_num under ProDOS 16 is unrelated o the
order in which handlers are polled.
174 Part Il: ProDOS 14 Systern Coll Reference Chapter 13: Interrupt Contral Calls 175

Parameler descripion

Ofisel

Labal

Descriplion

F00-501

$02-305

174

int num

int code

parameter name: interrupt handler number
size and type: word result Chigh-order bye sero)
range of values: $0000-300FF

The identifying number assigned to the interrupt handler by
ProDOS 16

parameter name: intermupt code

size and type: long word painter Chigh-order byte zera)
range of values: L0000 OD00-500FF FFTF

The long word address of the interupt handler routine

Possible ProDOS 16 errors

507 ProlX05 is busy
523 Interrupt vector table full
§53 Invalid parameter

Part Il: ProDOs 14 Systermn Call Referance

Important

Parameter descriplion

DEALLOC_INTERRUPT ($32)

This function clears the entry (specified by fr_mum) for an
interrupt handler from the interrupt vector table.

You must disable the associated Interrupt hardware before
making this call. A fatal emor will result If o hordware infermupt
occurs after Its enfry has been cleared from the vector table,

DEALLOC INTERRUFT has no effect on the order of the polling
sequence for the remaining handlers. Any subsequently allocated
handlers will be added 10 the end of the polling sequence

? |— nT_ il -J Wil

DEALLOC_INTERRUPT (532}
Paramater Blask

Qitset

Label

Dascription

$00-501

ink

um

parameter name: interrupt handler number

size and type: wiord value (high-order byte zero)
range of values: $0000-500FF

The identifying number assigned to the interrupt handier by
ProDO5 16

Possible ProDOS 16 errors

507 ProlM05 is busy
$53 Invalid paramerer
Chopter 13: Inferrupt Control Calls 177

F'_cni' _IH

The System Loader

The System Loader is an Apple IGS tool set that workes closely with
ProlX05 16, 1t is responsible for loading all program code and data
into the Apple TGS memory. [t is capable of static and dynamic
loading and relocating of code and data segments, subroutines,
and libraries

Chapter 14 explains in general terms how the System Loader works
Chapter 15 details some of its functions and data structures, Chapter
16 gives programming suggestions for using the System Loader
Chapter 17 shows how o0 make loader calls and describes each call
in detail See Appendix E for a complete list of System Loader error
condes

Chapter 14

Introduction to
the System Loader

This chapter gives a basic picture of the System Loader, defines
some of the important terms needed to explain what the loader
does, describes its interactions with the Memory Manager, and
presents an outline of the procedures it fallows when I{mﬂing*._l
program inta memory, Additional related terms are defined in the

Glossary.

What is the System Loader?

The System Loader is a set of sofiware routines that manages the
loading of program segments into the Apple IIGS. It is an Apple [1G5
toal set; as such, it is independent of ProDdO5 16, However, it works
very closely with ProDOS 16 and with the Memory Manager,
another 1oo] set. The System Loader has several improvements over
the Ioading method under ProD}{OS 8 on other Apple I1 computers:

O 1t makes loading easier and more convenient. Under ProDOS5 8,
the only automatic loading Is performed by the boot code, which
searches the boot disk for the first SYSTEM file (type $FF) and
loads It into location $2000. If a system program needs to call
another application it must do all the work itself, either by
making ProDOS 8 calls or by providing its own loader. On the
Apple IGS, calls to the System Loader perform the task mare
simply.

o It is a melocating loader: it loads relocatable programs at any
available location in memory. Under Prol¥05 B, a program must
be loaded at a fixed memory address, or at an address sp:_:clﬁed
by the system program that does the loading, The rélocating
loader relieves the programmer of the burden (and restriction)
of deciding where to load programs.

It is a sepment loader: it can load different segments of a
program independently, to use memory efficiently.

O It is 4 dymamic logder it can load cerlain program Scgments as
they are needed during execution, rather than at boot time only

The System Loader handles files generated by the APW Linker, the
linker handles files produced by an Apple 1G5 assembler or
compiler. The linker, assembler, and compilers are part of the
Apple IGS Programmer's Workshop (APW), a powerful and
flexible set of development programs designed to help
programmers produce Apple [1GS applications effidenty and
conveniently, See Chapter & of this manual for more information
and references an Apple 1165 Programmer's Workshop,

Loader terminology

The System Loader is a program that processes load files. Load fles
aré Prol}0S 16 applications or other types of program files. They
contain machine-language code or data and must follow objec
module format (OMF) specifications, as defined In the Apple Ies
Programmers Workshop Reference Each load file consists of load
segments that can be loaded into memory independently,

Load segments can be either static or dynamiec. A program's static
segments are loaded into memory at initial load time (when the
program is first started up); they must stay in memory until the
program is complele. Dynamic load segments, on the other hand,
are not placed in memory at initial load time; they are loaded as
needed during program execution. Dynamic loading can be
automatic (through the Jump Table) or manual (at the specific
request of the application through System Loader function calls),
When a dynamic segment i no longer needed by the program thar
called it, it can be purged, or deleted, by the Memory Manager.

segments can be absolute, relocatable, or position-
independent. An absolute segment must be loaded Ino a specific
location in memory, or it will not function properly, A relocatable
segment can execule correctly wherever the System Loader places
it. Least restricted of all is a position-independent segment; its
functioning is tdally unaffected by its location in memaory. It can
even be moved from one location to another between executions.
Muost Apple (1G5 code is relocatable, but not position-independent.

182 Part lll: The System Loadar Chapter 14: Infraduetion 1o the System Loader 183
ot l;

184

Load files can contain segments of various kinds, Some segments
consist of program code or data; others provide location
information 1o the loader, The Jump Table segment, when
loaded into memory, provides a mechanism by which segments in
memory can trigger the loading of other needed segments, Each
load file can have only one Jump Table segment. A load file can
also have one segment called the Pathname segment, which
provides a cross-reference between file numbess {in the Jump Table
segment) and pathnames {on disk) of dynamic segments. A third
special type of segment is the initialization segment. It contains
any code that has 1o be executed first, before the rest of the
segments are loaded.

When the System Loader is called to load a program, it loads all
static load segments including the Jump Table segment and the
Pathname segment. The Jump Table and the Pathname Table are
constrected from these two segments, respectively, During this
process, 3 Memory Segment Tahle is also constructed in
memory. These three tables are discussed in more detall in the next
chapter,

A controlling program is a program that requests the System Loader
to perform an initial load on another major program, wsually an
application. The User ID Manager assigns a unique identification
number (User 10} to that application, so the loader may quickly
locate all of the application’s segments if necessary. A switcher is an
example of a controlling program; ProDOS 16 and the APW Shell
are also controlling programs. A word processor is an example of
an application

Interface wﬂﬁ the Memory Manager

The System Loader and the Memory Manager work closely together,

The Memory Manager i an Apple 1G5 teol et (firmwine progem)
that Is responsible [or allocating memery in the Apple 1G5, It
provides space for load segments, tells the System Loader where 1o
place them, and moves segments around within memory when
additional space is needed

Part lll: The Systam Loader

R

When the System Loader loads a program segment, it calls the
Memory Manager 1o allocate a corresponding memory block.
Memory blocks have attributes that are closely related to the load
segments in them. If the program segment is state, its memory
block is marked as unpurgeable {meaning that its contents cannot
be erased) and fAxed (meaning that its position cannot be
changed), as long as the program is running, If the program
segment is dymamic, its memory block is initially marked as
purgeable bul locked (emporarily unpurgeable and fixed; subject
1o change during execution of the program). If the dynamic
segment is positon-tndependent, s memory block is marked as
movable, otherwise, it is fixed,

To unload a segment, the System Loader calls the Memory
Manager 10 make the coresponding memory block purgeable. If the
controiling program wishes to unload all segments associated with a
particular application (for example, at shutdown), it calls the
Systermn Loader's User Shutdown function, which in ture calls the
Memory Manager 1o purge the application’s memory blocks.

To speed up execution of a finder or switcher that may need 1o
rapidly reload shut-down applications, the User Shutdown function
can optionally put an application into a dormant state. The loader
calls the Memory Manager to purge the application’s dymamic
segments, and make all satic segments purgeable. This process
frees space but keeps the unloaded application's essential SERMENnts
in memaory, However, if for any reason memory rans out and the
Memory Manager is forced 1o purge one of those static segments,
that application can no longer be used—ihe next time it is needed,
it evust be loaded from its disk file, See "User Shutdown® and
"Restan” in Chapter 17

¢ Note: Strictly speaking, load segments are never purged or
Jocked, those are actions taken on the memory blocks that hold
the segments. For simplicity, however, this manual may in
cenain cases apply lerms such as purged or locked 1o segmens.,

A typical load segment will be placed in a memory block that is

Locked

Fixed

Purge Level = 0 GF the segment is static)
Purge Level = 3 (if the segment is dynamic)

Chapler 14: Infreduction to the System Loader 185

184

Depending on other requirements the segment may have, such as
alignment in memory, the load segment-memory block
relationship may be more complex. Table 14-1 shows all possible
relationships berween the two that may hold at load time. The
direct-page/stack segment has special characteristics described in

Chapter 6,

Table 14-1

Load-sagmeant/maman-block relationships (at load time)

Load Segment Aftribuie

static

dynamic

absolute (CRG > O}
relocatable
position-independent
not postion-independent
KIND = §11
BANKSIZE =0
BANKSIZE = 510 000
ALIGHN =0

ALIGH = $100

ALIGH = 5§10 000

direa-page/stack (KIND =

Mamory Block AHribute

unpurgeable, fixed
(unmovable}

purgeable, locked

fixed address

(no specific relation)

not fixed (movable)

fixed (unmovablie)
fixed-bank

may cross bank boundary
may not cross bank boundary
not bank- or P:uge-:ﬂ:'gnr:d'_
page-aligned!
'Im:rj]'i-;{.hgﬂl.‘:l:!T

purgeable, fxed-bank (3000,
page-aligned

TMignn;cnl may also be controlied by the value in the BANKSIZE

field—see Appendix D

& Nofe: ORG, KIND, BANKSIZE and ALIGN are segment
header fields, described in Appendix D of this manual and
under “Object Module Format" in Apole G5 Programmery

Waorkshaop Reference,

A memory block can be purged through 2 call to the System Loader,
but other attributes can be changed only through Memory Manager
calls. Memory block properties useful 10 an application may

include
O Start location

O Size of block

O User ID (identifies the application the block is par of)

0 Purge level (0 @ 3: 0 = unpurgeable, 3 = most purgeabls)

Part ll: The System Looder

These properties may be accessed either through the Memory
Segment Table (see Chapter 15}, or through the block’s memory
handle, which is part of the Memory Segment Table. If the memory
handle is NIL (points to 1 null podnter), the memaory block has been
purged

Loading a relocatable segment

The following brief description of pants of the operation of the
Systern Loader shows how the linker, loader, and Memory Manager
work together 1o produce and load a relocatable program segment.
Figure 14-1 diagrams the process in a simplified form,

Load files conform 1o a subset of object module format (OMF), In
OMF, each module (file) consists of one or more segments; each
segment is further made up of one or more records. In a load file
specifically, each segment (apart from specialized segments such as
the load file tables described in Chapter 15) consists of a header
followed by program code or data, in twm followed (if the segment
is relocatable) by a relocation dictionary. The relocation
dictionary is created by the lnker as it convers an object segment
into a foad segment, The program code or data consists of two ypes
of records: LCONST records, which hold all code and data, and DS
records, used for filling space with zeros. The relocation dictionary
consists of two generl types of records; RELOC secords, which
give the loader the information it needs 1o resolve local
{intrasegment) references, and INTERSEG records, which Rive
the loader the information it needs 1o resolve external
(intersegment) references. cRELOC, cINTERSEG, and SUPER
records are also found in elocation dictionaries—they are
compressed versions of RELOC and INTERSEG records. The
detailed formats of all OMF records are presented in Apple G
Programmer’s Workshop Reference.

When a relocatable segment is loaded into memory, it is placed at a
location determined by the Memory Manager. Furthermore, only
the first part of the segment (the program code itself) is loaded into
the part of memory reserved by the Memory Manager; the
relocation dictionary, if present, is loaded into a buffer or work area
used by the loader, After Ioading the segment, the loader relocates
it, using the information in the relocation dictionary,

Chapter 14 Infroduction fo the System Looder 187

Oibject Fiie

Segmenl

seament

Segment
1

188

Part

1ns

Memory Bonk SXX

1 headar

code

ry Fe B local nedd e o) J
/.f O 'ﬁ' Segmant n |

An

1 "
i
i
sy Bonk §YY

Segmant o

code -

Agure 14-1
Leading o relocaotable segment

Relocation

After the System Loader has placed a load segment in memory, it
must (uniess the segment consists of absolute code) relocate s
address references. Relocation descnbes the processing of a load
segment so that It will execute properly at the memory location at
which it has been loaded. It consists of patching (substimuting the
proper values for) address operands that refer 1o locations bath
within and external 1o the segment. The relocation dictionary part
of the segment contains all the information needed by the loader 1o
do this parching. Relocation is performed as follows

1. Local references in the load segment (coded in the original
ohiject file 2s offsets from the beginning of the segment are
paiched from RELOC records in the relocation dictionary,
Using the starting address of the segment (available from the
Memory Manager through the Memory Segment Tabled, the
loader adds that address to each offset, so that the comect
memory addoess is referenced

Il: The Systam Loader

2. External references (references 1o other segments) are coded in
the original object module as global variables (subroutine names
or entry points), The linker and loader handle them as follows:

a. If the reference is 1o a static segment, the linker will have
calculated the proper file number, segment number, and
offset of the referenced (external) segment, and placed that
information in an INTERSEG record in the relocation
dictionary. When the load segment Is loaded, the logderuses
the INTERSEG record and the memory location of the
external segment (available from the Memory Manager
through the Memory Segment Table), and then paiches the
external reference with the proper memory address of the
external segment.

b. If the reference is 1o a dynamic segment, the Nrker will have
created a slightly different INTERSEG record: instead of
referencing the file number, segment, and offset of the
referenced external segment itsell, the INTERSEG record
references the file number, segment number, and offset of an
entry in the fump Table. Therefore, when the load segment is
loaded, the loader patches the reference to point to the Jump
Table entry. That entry, in turn, s what transfers control to the
external segment al its proper memory addeess Gf and when
the referenced segment is loaded),

The Jump Table and the reascns for this indirect referencing are
described further in Chapter 15, The main point of interest here
is that, when it perfforms relocation, the loader doesn't care
whiether an intersegment reference is to a static or to a dynamic
segment—il treals bath in exactly the same way,

The System Loader performs several other functions when it loads
dynamic segments, including searching for the name of the
segment in the Pathname Table before loading, and patching the
appropriate Jump Table entry afterward. These and other functions
are described in more detail in the next two chaplers.

Chapter 14: infroduction fo tha System Loader a9

This chapter describes the data tables set up in memory during a

Chqpfer 1 5 load, 1o E;:u't:w.'i{:h: cross-reference [nfq}rmau'fn to the loader. I:I;!:‘u:"
Memaory Segment Table allows the loader 1o keep track of which
segments have been loaded and where they are in memory. The

Jump Table allows programs (o reference routines In dynamic
srstam Loader Data Tables segments that may not currently be in memory. The Pathname
Table provides a cross-reference berween file numbers and file
pathnames of dynamic segments, The Mark List speeds relocation
by keeping track of relocation dictionaries.

Memory Segment Table

The Memory Segment Table is a linked list, each entry of which
hardle te T describes 4 memory block known 1o the System Loader. Memory
st @niry 1 40 hincks are allocated by the Memory Manager during loading of

segments from a load file, and each block comesponds 1o & single

- O - load segment. Figure 15-1 shows the format of each entry in the
previous ety | 4PV'®0 Memory Segment Table.

The fields have the following meanings:

= Uil - 2oyres
Handle to next entry: The memory handle of the next entry in the

B 1 Memory Segment Table, This numbser is O for the last entry

' memony hondle < 4 byles

= = Hondle o previous eniry: The memory handle of the previous
irsires v M sgrnant Table. This ber is O For the Rt

5 load-fe na 4 2 bvies entry in the Memory Segment Table. This number is O for the firs
cntry.

= - 13 - bBytes s 5 " " .

QOIS NG 2 bytes Usor ID: The identification number assigned o the memory block

L loadsagment kind o 2 bytes this segment inhabits, Normally, the User 113 is available direcily

from the Memory Manager through the memory handle, However,

if the block has been purged its handle is NIL and the User 1D must

Figure 15-1 be read From this Beld
Memory Segment Table eniry catlan i nl it

191 192 Part (li: Tha System Looder

Memory handle: The identifying number of the memory block,
obtained from the Memory Manager. Additional memory black
information is available through this handle, This handle is NIL if
the block has been purged.

Load-file number: The number of the load file from which the
segment was obained. If the segment is in the initial load file, the
number is 1

Load-segment number: The segment number of the segment in the
lpad file

Load-segmaent kind: The value of the KIND field in the load
segment’s header. Segment kinds are described in Appendix D.

Jump Table -

When a program (load file) is initially loaded, only the static load
segments are placed in memory: at that point the System Loader
has all the information it needs to resolve all symbolic references
among them. Until 2 dynamic segment is Ioaded, however, the
loader cannot resolve references o it because it does not know
where in memory it will be, Thus static segments may be directly
referenced (by each other and by dynamic segments), but dynamic
segments can be referenced only through J5L (Jump to Subroutine
Long) calls 1o the Jump Table. This section describes how that
mechanism works

The Jump Table is a structuse that allows a program o reference
dynamic segments. Il consists of the Jump Table Directory and one
or more Jump Table segments,

Cmn dizk, Jump Table segments are load segments Cof kind 5020,
created by the linker to resolve references to dynamic segments

Any load file or run-time library file may contain a Jump Table
Segmenl.

Choptar 15 System Loader Dota Tables 193

194

In memory, the Jump Table Directory is created by the loader as i
Ioads Jump Table segments. The Jump Table Direciory is a linked
list, each entry of which points 1 a singbe Jump Table segment
encountered by the loader, Figure 15-2 shows the format of an entry
in the Jump Table Directory.

andia 10
B |I oo ta d 4 bytes

= 4 bylas

o Lizail - 2 byles

- memory hondle = 4 byles

Flgure 15-2
Jump Table Direchory antry

The fields have the following meanings:

Hondle to next enlry: The memory handle of the next entry in the

Jump Table Directory, This number is O for the last entry.

Handle lo previous enlry: The memory handle of the previous
entry in the Jump Table Directory, This number is O for the frst
entry.

User ID: The identification number assigned to the Jump Table
segment that this Directory entry refers to.

Memory handle: The handls of the memory block containing the
Jump Table segment that this Directory entry refers to.

Like the Directory, the individual Jump Table segments consist of 4
series of entries, The next three subsections describe the creation,
loading, and use of a single Jump Table segment entry. The cntry is
used 1o resolve a single JSL instruction in a program segment

& Note: Throughout this manual, the term fump Table entry
refers to a Jump Table segment entry, not a Jump Table
directory entry,

Fart Ill: Thia System Looder

s

Creation of a Jump Tal';la entry

The Jump Tahle load segment s created by the linker, as the linker
processes an object file. Each time the linker encounters 3 J5L to
4 rouline in an external dynamic segment, it creates an INTERSEG
record in the relocation dictionary of the load segment, and Gf it
has not done so already) an entry for that routine in the Jump Table
segment. The INTERSEG record links the J5L to the Jump Table
entry that was just creaied. Figure 15-3 shows the format of the Jump
Tabie entry that the linker creates. See also section a of Figure 15-5

L
|— UsarD = 2 bytas

o load-fila no - 2 bylas

M loodsegment no, = 2 bytes

loag-segmant

offsat < 4 byles
o J5L 1o —
= Jump Tobée load o 4 bytes
- fumctian -
Figure 15-3

Jump Tabie entry (unlooded state)

The fields have the following meanings:
User ID: The User 1D of the referenced dynamic SCgmEn

Load-flle numbar: The load-file number of the referenced dyvnamic
Sepment.

Load-segmeni number: The load-segment number of the
referenced dynamic segment

Lood-segment offsel: The location of the referenced address within
the referenced dynamic segment

J5L ke J.ump Tubh. Load funclion: A lang subroutine jump 1o the
Jump Table Load function. The Jump Table Load function is
described in Chapter 17

The F:r'.rll. entry in a Jump Table segment has a load-file number of
zefo, (o indicate thal there dre no more entries in the segment.

Chopter 15: Systemn Loader Data Tobles 195

At load time, the loader places the program segment and the Jump
Table segment into memaory (it does not yet load the referenced
dynamic segment). To link the Jump Table segment with any other
Jump Table segments it may have loaded, it creates the Jump Table
Directory. The Jump Table i now complete

Using the information in the INTERSEG record, the loader
patches the JSL instruction in the program segment 5o that it
references the proper pan of the Jump Table in memory. It alse
patches the actual address of the Jump Table Load function into the
Jump Table entry. The Jump Table cnlry is now in s rerlodded
stare, See section A of Figure 15-5

Use duﬂﬁ_g-;x_ai:"ﬁﬂon

During program execution, when the JSL instruction in the
ariginal load segment is encountered, the following sequence of
evenls takes place:

1. Control transfers to the proper Jump Table entry.

2, The J5L in the entry transfers control to the System Loader's
Jump Table Load function.

. The Jump Table Load function gets the load-file number, load-
segment number, and load-segment offset of the dynamic
segment fram the Jump Table entry. Then it gets the file
pathname of the dynamic segment from the Pathname Table
The System Loader loads the dynamic segment inlo memory
The loader changes the dyramic segment's entry in the Jump
Table to its loaded state The loaded state s identical to the
unloaded state, except that the J5L to the Jump Table Load
function is replaced by 2 ML (unconditional Jump Long) to the
external reference itself. Figure 15-4 shows the format for the

T

WA e

loaded state

Part Hl: The Systerm Loader

[Obsact Segment n Lepd Segmmend i HMagmory Bonk $XX
- UserlD - 2 bytes T sagmant
fcoda)
o oad-fia na. - Z bytes
Linker > | I Loader
I lod-segment no. = 2 bytes pid e 2 The A Ly
SnoouUnTens o (relocation codar loods MIERSES
L 2 15, th Lindosr thae load file H ¥ mecoud
load-segment croatas Info mamory, i s e Looder
= offsat - 4 bytes INTERSES Ineluding == det-H
- — recoed in the tegment n fra comed
! Firdeg
1 food sagmant | jump Toble Se t | ond tha Mgrnary Bonk gy S of
- JML to E ﬁ ard an anfry -_r ::"e:.da :,mm dump Tabie E—— !
- the extemc - 4 bytes Pynamic naferancirg : : sogrment Jumo Tabla
L refarence B S0 end g
he e
M Jumo Table - S [—
stn*;_:r'!u"‘) potches
Agure 15-4
Jurrip Table enfry (ooded state) : H
] i
4. The loader transfers control (o the dynamic segment. When the
new segment has finished its task (typically it is a subroutine and
exils with an RTL, Refurn from Subroutine Long), control
returns (o the statement following the original J5L instruction
See section B of Figure 15-5
Fgure 15-5A

How the Jump Table works

Jump Table dlugn:;m

Figure 15-5 s a simplified diagram of how the Jump Table works. Tt
fellows the creation, loading, and use of a single Jump Table entry,
needed 1o resolve a single instruction in load segment 7 The
instruction is a J5L to a subroutine named rowfine in dynamic
segment d.

Chaptar 15: Systern Loader Dato Tables 197 {1+ Part ll: The Systermn Logoder

Marmary Bank 5§30

Marnary Bork 57V

SJmp Tabke

Mesnory Bonk §II

Diyriarmic

S

Sagment
o

a. B
encountesad
during
exacution
I
1l
' 3
Exgcution § 5 Loader
passet 1o i changes
dump Table wemany Bank §¥Y i 1% #from | Jumo Toble
antny gment ariry 1o its
Jump Table a looded
#are
P— et g ;
Juma Table - than b. Routing
Laad function pasas finlshes
cormd to wiin an
: : | g 7L bock to
! H H ML 1o sagmantn
1 ' outing
Memary Sank $IT Memary Bank LI
which 2;3’:? :':—:m;
Lalala] i = f S ,.g'. i
dynoemic :
segrment o J ERE k-

harde 1o
it @iy

nandle to
previoLs entry

Figure 15-58
How the Jumg Table works (continued)

Pathname Table

The Pathname Table provides 4 cross-reference berween file
numbers and file pathnames, 1o help the System Loader find the
load segments that must be loaded dynamically. The Pathname
Table is a linked list of individual pathname entries; it starts with an
entry for the pathname of the initial load file, and includes any
entries from segments of kind $04 (Pathname segments) that the
loader encounters during the load. Also, if run-time library files are
referenced during program execution, their cwn pathname
segments are linked to the original one.

Chapter 15: System Loader Data Tables 199

B UsedD -
- oad-fla na =1
- fle date =
— s time -
adarnass of il
direc page /siack
B sl af a
drect poge/stack
[Jump-Toble-looded |
e

[tenghy byie)

’\,-—“G_”IQK

Flgure 15-&
Pathnome Tabla aniry

4 bytes

4 bytes
2 bytas
2 ovies
2 bytes
2 byles
2 bytes

2 bryhies

A load file's Pathname segment (XIND = $04) is constructed by the
linker and contains one entry for each run-time library file
referenced by the file, Fach entry consists of a lead-file number,
file date and time, and 2 pathname. The exact format for
Pathname-segment entries is given in Apple GS Programmer's
Workshop Reference,

The Pathname Table is constructed in memory by the loader,
its entries are identical 1o Pathname segment entries, except
that each also containg two link handles, a User 1D feld, and
direct-page/stack information, Figure 15-6 shows the formar of
4 Pathname Table entry

The fields have the following meanings:

Handle to next entry: the memory handle of the next entry in the
Pathname Table. For the last entry, the value of the handle s 0.

Handle o previous entry: the memory handle of the previous
entry in the Pathname Table. For the first entry, the value of the
handle is 0.

User ID: the 10 associated with this entry. Generally, each load file
has a wnique User I, and a single entry in the Pathname Table.
Fach new run-time library encountered during execution is assigned
the application’s User 10,

File number: the number assigned to a specific load file by the
linker, File number 1 i reserved for the initial load file

Flle date: the date on which the file was last modified.
File time: the lime a1 which the file was last modified

The file date and file time are ProDOS 16 directory items retrieved
by the linker during linking. They are included in the Pathname
Table as an identity check on run-time Lbrary files (they are ignared
for other file types). To ensure that the run-time library file used at
program execution is the same one originally linked by the linker,
the System Loader compares these values to the directory entries of
the run-time library file to be loaded. If they do not match, the
System Loader will not load the file

Direct-page/stack oddress: the starting address of the buffer
allocated (at initial load) for the file's direct page (zero page) and
stack.

Direct-page/stock size: the size (in bytes) of the buller allocated
for the file’s direct page and stack,

200 Part il The System Looder

-
L]
-

Figure 15-7
Mark List format

The fields have the following meanings:

the
he Mark List) 1o the next wemply space in the Mark
PLY SE

Mex! avalloble space: The relative offset (in bytes i
beginning of

5 o by s List
e o
I's relo n end of loble: The fzer 1o the end of the Mark List—in
location becaos: sther words, its sise n bytes
In' 1 throug f ' . :
I ; ; segmant number: The number of the load segment whose
¥ Lisl WS il o : gra
firectl hee fon | is specified in the following field
+ I 1= 588 s i ol dictionan 2
I N P T he Mk Flte Mark: The relative offset (in bytes from the beginning of the
I Nows i 13t [L :

pad file) 1o the relocation dictionary of the segment specified in
~ceding field. F Wark in this table has the sime meaning &
¢, in Prol0S 16 (see Chapter 2)

abiles 201 202 Part Il The Systemn Looded

C hG pter] é This chapler discusses how you can use Lh::' -;_'::pﬂ!:i“lit‘.s of the
System Loader at several different levels, depending on the
= = complexity of the programs you wish 1o write. It also gives
requirements for designing controlling programs (shells}—
programs that control the loading and execution of other

Programming With peograma
'hE SYSTEITI Lﬂuder Programming suggestions for ProDOS 16 are in Chapter 6 of

this manual. More general information on how to program for
the Apple [1G5 s available in Programmer’s Introduction o the
Apple [iGs. For language-specific programming instructions,
consult the appropriate language manual in the Apple [1G5
Programmer's Workshop (see “Apple [1GS Programmer's
Workshop” in Chapter 6).

Static programs

The functioning of the System Loader is completely transparent 1o
simple applications, Any program that is loaded into mem:
entirety al the beginning of execution, and which does not call any
other programs or routines that must be loaded during run time,
need not know anything about the Systemn Loader. If such a static
program Is in proper object module Tormar, it will be automatcally
loaded, relocated, and executed whenever it is called

Programming with dynamic segments

You may write Apple [IGS programs thal use memory more
efficiently than the simple application described above. 1T your
program is divided into static and dynamic segments, only the
static segments are loaded when the program is started up.
Dynamic segments are loaded only as needed during execution,
and the memory they occupy is available again when they are no
longer needed.

1% 204 Part il The System Loaded

Dynamic loading also is transparent to the typical application; no
System Loader commands are necessary to invoke it If you segment
your program as you write the source code, and if you define the
proper segments as dynamic and static when the object code is
linked, the loading and execution of dynamic segments will be
completely automatic

Because segments are specified as static or dynamic at link time,
you may experment with several configurations of a single program
after it has been assembled. For example, you might fisst run the
program as a single static segment, then run several different statie-
dynamic combinations 1o see which gives the best pedormance for
the amount of memaory required. [n this way the same program
could be taillored to different machines with different memory
configurations.

[n general, the least-used pans of a program are the best candidares
for dynamic segments, since loading and executing a dynamic
segment takes longer than executing a static segment. Furthermore,
making a large, seldom-used segment dynamic might make the
initial load of a program faster, since the static pant of the load file
will be smaller.

Dynamic segments can be used as overdays (segments with the same
fixed starting address that successively occoupy the same memaory
area), but this structure is not recommended for the Apple 11GS, If
all segments are instead relocatable, the Memory Manager has
maore flexibility in finding the best place for each allocated

segment, whether or not it happens to be a space formerly occupied
by another segment of the same program.

Programming with run-time libraries

¢ Note: Although the System Loader supparts ran-time libraries,
initial refeases of other Apple 11GS system software may not,
This section discusses how (0 program [or run-time librarles
when full support for them becomes available

A run-time library is a load file. Like other libraries or subroutine
files, it contains general routines that may be referenced by a
program. As with other libraries, references 1o it are resolved by the
linker)

Chapter 14: Programming with the System Looder

Unlike other libraries, however, ils segments are not physically
appended 1o the program that references [t; instead, the linker
creates 4 reference to it in the program’s load file. The run-time
library remains on disk (or in memory) as an independent load file;
when one of its segments is referenced during program execution,
the segment is then loaded and executed dynamically.

As with dynamic segments, loading of mun-time library segments &
transparent to the typical application. No System Loader
commands are necessary (o invoke it; as far as the loader is
concerned, the run-lime library is just another load file with
dynamic segments.

The most useful difference between mun-time library segments and
other dynamic segments is that they may be shared among
programs. Routines for drawing or calculating, dialog boxes or
graphic images, or any other segments that might be of use 1o mone
than one program can be put into run-time libraries. And, being
dynamic, they help keep the initil load file small.

Important I wing both run-time librardes and othar dynamic sagmants,
make sureé that the volumes containing all needed segments
and llbrafes are on line at run fime. A fatal emor occurs |f the
System Looder cannot find a dynomic segment it nesds o
|,

User control of segment loading

To make the greatest use of the System Loader, programs may make
loader calls directly. For most applications this s not necessary,
but for programs with specialized needs the System Loader offers
this capability.

Your application can manually load other segments using the Load
Segment By Mumber and Load Segment By Name calls. Load
Segment By Number requires the application to koow the load Ele
number and segment number of the segment (o load; Load Segmvent
By Name uses the load file pathname and segment name of the
desired segment. Both require User 1D as an input; the User 1D for
each segment and each pathname are available from the Memaory
Segment Table and Pathname Table, respectively. Other segment
information available through the Get Load Segment Info call.

Part lll: The Systarn Loadar

——

One advantage of manually loading a dynamic segment is that it can
be referenced in a more direct manner. Automatically-loaded
dynamic segments can be referenced only through a J5L o the
Jump Table; however, if the segment is data such as a able of
vilues, you may wish to simply access those values rather than pass
execulion to the segment. By manually loading the segment,
locking it, and dereferencing its memory handle (obtaining a
pointer to the star of the segment), you may then directly reference
any location in the table. OF course, since the loader does not
resolve any symbolic references in the manually loaded segment,
the application must know ils exact structure.

A program is responsible for managing the segments it loads, That
is, it must unload them (using Unload Segment By Number) or make
them purgeable and unlocked (through Memory Manager calls)
when they are no longer needed.

Dﬁiéning a controlling program

A program may cause the loading of another program in one of two

WY

O The program can make a ProDOS 16 QUIT call. ProDOS 16 and
the System Loader remove the quitting program from memory,
then load and execute the specified new program.

O The program can call the System Loader directly. The loader
Isads the specified new program without unloading the original
program, then hands control back to the original program.

A controlling program Is an application that loads and executes
other programs using the second method. It uses powerful System
Loader calls that are normally reserved for use by ProDOS 16,
Certain types of finders, switchers and shells may be controlling
programs; if you are writing such a program vou should follow the
conventions given here.

Chapter 14: Programming with the System Loader 207

208

An application needs 1o be a controlling program only if it must
remain in memory after it calls another program. I it is necessary
only that control retirm o the original program after the called
program quits, the ProDOS 16 QUIT call is sulfictent for that. For
example, a finder, which always returns after an application that it
calls quits, does not have to be a controlling program; it is not in
memory while the application is running. On the other hand, the
Apple 1165 Programmer's Workshop Shell, which has functions
needed by the subprograms that it calls, &5 2 controlling program, i
remains active in memory while its subprograms execute.

% Note: Subprograms are [ile type §B5, called shell
applicatlons. They too must follow cerain conventions See
“Object Module Format® in Apple [Gs Frog rammer's
Workshop Reference, and Programmer’s Introduction io the
Apple TGS

If you write a controlling program, please follow these guidelines:

1, The contralling program should request a User 1D for the
subprogram, either directly from the User ID Manager or
indirectly, by calling the System Loader's Initial Load function
with an input User ID (Main1n) of zero. The controlling program
should then pass the returned User I 1o the subprogram in the
accumulator

2, Use the System Loader's Initis] Load function to first load any
subprogram. The function returns the subprogram's stasting
address and User 1D 10 your controlling program; the
controlling program can then decide when and where Lo pass
contral to the subprogram

3, YWhen your controlling program passes execution (o the
subprogram, it may also pass parameters and an identifier
string. The painter 1o the buffer containing that information
should be placed in the X (high-order word) and ¥ (low-arder
word) registers. The buffer should contain an 8-characer shell
identifier string, followed by a null-terminated string consisting
of the complete input line or command line through which the
subprogram was called.

& Note: ProDOS 16 does not pass an identifier string of
command line when it launches a shell application. It places
peros in the X and Y registers

Part lll: The System Loader

ol

Your controlling program is responsible for establishing the
appropriate input and culpul vectors for its subprograms. For
example, when Prolx35 16 launches a $85 file, it sets the global
/0 hooks to point to the firmware Pascal drivers for BO-column
screen and keyboard. The identifier string your controlling
program passes to the subprogram allows it to check 1o make sure
it is running in the proper 170 environment (that is, under your
controlling program and not another).

. The controlling program should observe the ProDOS 16
conventions for register initialization and direct-page/stack
allocation. See Chapter 6

bl

6. If you want your controlling program to support shell
applications that lerminate with 2 ProDOS 16 QUIT call, the
tontrolling program must intercept all ProDOS 16 calls. Thar
way when a subprogram quits, the controlling program, rather
than ProlX25 16, regains control

When the shell application exits back to the controlling
program, it leaves an error code in the accumulator, Two values
are reserved: S0000 means no error, and $FFFF means 3 non-
specific shell-application error. Your controlling program and
subprograms may define any other errors as needed,

~J

8. Your controlling program is totally responsible for the
subprogram's disposition. When the subprogram Is finished, the
controlling program must remove it from memory and release
all resouerces associated with Its User 1D, The best way to do this is
to call the System Loader's User Shutdown function.

9. IF the subprogram diself manually loads other programs, then it is
also a controlling progsam and must observe all the conventions
listed here. in particular, it must be certain 1o dispose of all
memory resources associated with the subprogram than
loaded, before isell quitting and passing contral back to the
original controlling program.

The practice of using shell applications as controlling programs
is discouraged

Shutting down and restarting applications

Through alternate use of the User Shutdown and Restart functions, 1
controlling program can rapidly switch execution among several
applications. If none of an application's static segments have been
removed from memory since shutdown, Restart brings the
application back rapidly because disk access is not requined,

Chapter 14: Programming with the Systemn Loodar 209

210

However, only software that is restartable can be restarted in this
way, Restartable software reinitializes its variables every time it gams
contral; it makes no assumptions about the state of the machine .
when it starts up. If a subprogram exits with a QUIT call, it specilics
whether |t Is restartable or not; otherwise, the controlling program
i5 responsible for deciding whether a program qualifies as
restartable.

Summary: loader calls cmegn'ri_zad

The following table categorizes System Loader calls by the types of
programs that make them. Most applications, whether their
sdgments are static or dynamic, and whether or not they use mun-
time libraries, need make none of these calls. Applications that
load dynamic segments manually may call any of the user-cailabis
functions. Controlling programs and ProDOS 16 call the system-
wide functions. Only the System Loader itself may call the infernal
functions. Functions not listed in Table 16-1 either do nothing or
are execuied only at system starup

Table 15&-1

Systemn Leader functiors cotegorized by caller

I.Illl'-Ci:.Il:I:.il Sysfem-Wide Imtarmol

Loader Version Inital Load Jumgp Table Load
Loader Status Restart Cleanup

Load Segment By Number Get User 1D
Unload Segment By Number Get Pathname
Load Segment By Name User Shutdown
Unload Segment

Get Load Segment Info

Part lil: The Systemn Loocder

Chapter 17

System Loader Calls

Introduction

This chapler explains how System Loader functions are called, and
describes the following calls:

Hurmibsar

Function

Purpose

501

s02
§03

504

311

i
ra

21 212 Part Il Thia System Looder

Loader Initialization

Loader Startup
Loader Shutdown

Loader Version

Loader Reset

Loader Satus

Initial Load

Restart

Load Segment By Mumber

Unload Segment By Number

Load Scgment By Mame
Unload Segmeant

Get Load Segment Info
Gel User I

Get Pathname

User Shutdown

1. T

Jump Table Load

Cleanup

(executed at system
startup)

(no function)
(no function)

returns System Loader
version

(no fencriond

retums initialization
slatus

loads an application

slarts a dormant
application

loads a single segment
unloads 3 single segment
loads a single segment
pnloads a single segmenl

reluins a segment's
handle

returns User ID fora
pathname

refurns pathname for a
User 1D

f‘_’:lktﬁ an .'|_|'_'|;1-.;|';I|I:::'|
l_i:}r_',11.;4'.l|
loads a dynamic segment

frees memory space

How calls are made

The System Loader is an Apple 11G5 ool set (ool number 17, or
hexadecimal $11). Yoo call its functions using either macro calls
{not described here) or the standard Apple TIGS tool calling
sequence, as (ollows:

. Push any required space for returned results onto the stack.
Push each input value onto the stack, in the proper order,
3. Execute the following call block:

LDX BSll+FuncRum|@
Jd5L Dlspatcher
whens

#3511 is the System Loader tool set number
FuncBum is the number of the function being called

(18 means "shift left by B bits™.)
Dispatcher is the address of the Tool Dispatcher
(3E1 0000,

It is the responsibility of the caller (uswally a controlling program)
to prepare the stack for each function it calls, and to pull any results
off the: stack. Error status is retumned in the accumulator (A register);
furthermore, the carey bit i set (1) iF the call is unsuccessful, and
ceared (0) if the call s sucessful

The Jump Table Load function does not use the above calling
sequence, and cannot be called directly by an application, It is
called indirectly, through a call to a Jump Table entry, The absolute
address of the function is patched into the Jump Table by the System
Loader at load time

Parameter types

There are four types of parameters passed in the stack: values,
results, pointers, and handles. Each is either an tnpmaf fo or an
oo from the loader function being called.

1 A value is 2 numerical quantity, either 2 bytes (word; see Table 3-

13 or 4 bytes Jong word) in length, that the caller passes (o the
System Loader. It is an inpul parameter,

A result is & numerical quantity, either 2 bytes (word) or 4 bytes
long word) in length, that the System Loader passes back to the
caller, It is an output parameter,

Chapter 17: System Loader Colls 213

214

a

Format 'féTs'ystem Loader call dascrip_ﬁans

A polnter is the address of a location containing data, code, or
buffer space in which the System Loader can recelve or place
data. A pointer may be 2 bytes (word) or 4 bytes {long word] in
length. ‘The pointer iself, and the data it points 1o, may be either
input or cutput

A handle is a special type of pointer: it is 2 pointer 1o a pointer.
It is the 4-byte address of a location that itself contains the
address of a location containing data, code, or buffer space. In
Systemn Loader calls, a handle is always an output.

The following sections describe the System Loader calls in detail
Each description contains these clements:

the full name of the call
a briel description of what function it performs

1 the call’s function number

the call’s assembly-language macro name (use it if you make
macro calls)

the call's parameter list (input and cutpul)
the stack configuration bath before and after making the call

1 4 list of possible error codes

the sequence of events the call invokes (if the brief deseription is
not complete enoughl

Porometer list note: In the parameter lists, fmfd paramelers are

listed in the order in which they are pushed omto the stack; ot
parameters are listed in the order in which they are pulled from the
stack. Check the stack diagrams if you are uncertain of the proper
arder in which (o push any of the parameters,

Stack diogrom nobe: Unlike other memory tables in this manual,
the stack diagrams are organized in units of words—that is, each tick
mark represents (o vtes of stack space

Bart ll: The Systerm Loader

Loader Initialization ($01) Loader Startup (302)

The Startup routine s required for all Apple 1G5 ol sets, For the
System Loader, this function does nothing and need never be
called

This routine initializes the System Loader; it s called by the system
software at boot time. Loader Initialization clears all loader tables
and sets the initial state of the system, making no assumplions about
the: current or previous state of the machine. The System Loader's Function Number: 302

global variables (see Appendix D) are defined at this time
Mocro Name: LoaderStartup

The [nitialization routine is required for all Apple IG5 tool sets,

Functien Number: $01

Mocro Name: LoaderTnis Paramelers
LAone)

Parameters

S Possible errors
rome)

Possible errors

Cnone)

Chapter 17; Systermn Loader Calls 215

Loader Shutdown ($03) Loader Version (504)

The Shutdown routine is required for all Apple [IGS ool sets. For the The Loader Version function retums the version mumber of the

System Loader, this function does nothing and need never be System Loader currently in use. The version number has this

called format:
Funcllon Number: 503 Byte 0
Byie yte O
M N : LoaderShutde . = = T
ocro Nome: LoaderShutdown L '5|M|=..3]EI'Ill'Cll‘?!Ei ?lﬁlh!dial?“l“

Value: |B] Maojor Relegse Mo Minor Release No.

Parameters wher
{none) 1 Byte 0 is the minor release number { = 0 for System Loader
version 1.00
3 Byte 1 is the major release number { = 1 for System Loader
Possible errors veuion 1.0)
» B (the most significant bit of byte 1) = 0 for final releases
(none) = 1 for all prototype releases
The Version routine is required for all Apple 1G5 1ool sets
Funcilon HNumbaer: 504

Mocro Name: LoaderVersion

Parameters
Name Size and Type
Input (none)
Cutput Loader version word result {2 bytes)
Chapter 17 Systam Loadar Calls N7 218 Part 11l Tha System Looder

Stack Before Call:

Loader Reset (-5 05)

The Reset routine is required for all Apple IG5 ol sets. For the
Systemn Loader, this function does nothing and need never be
called

| |- 5p

Stack After Call: Function Number: $05

C '_":‘ Mocre Mome: LoaderBeset
-op

Parameters
Possible errors {nonc)

Lnone)

Possible ermrors

{none)

Chapter 17: System Loades Calls 219 220 Part Ill: The Systam Loadar

e

Loader Status (506)

This routine returns the current status (initialized or uninitalized) of
the System Loader. A nonzero result means TRUE (initialized); a
zero result means FALSE (uninitialized), A result of TRUE is always
refumed by this call because the System Loader is always in the
Indtalized state.

The Status routine is required for all Apple [IGS ool sets,
Funclion Number: 506

Mocro Name: LoadarStatus

Parameters
Hams Size and Type
Input (none)
Cutput status wond result (2 bytes)

Stack Before Call:

pravvidus Conlents
frgsit space)

*+-zp
Stack After Call:
| previous contents
Ston'us
I -+ 5p
Possible errors
(none)
Chapter 17: Systermn Loader Calis 221

Initial Load ($09)

This function is called by a controlling program (such as a shell or a

swilcher) 1o ask the System Loader to perform an initial load of a
program.,

Funchon Mumber: 509

Mocro Nome: Tnitialload

Parameters
Hames Size ond Type
Input User 1D word value (2 byies)
address of load-file long word pointer (4 bytes)
pathname
special-memory flag word value (2 byies)
Output User ID word result {2 bytes)
slarting address long word painter (4 bytes)

address of direct-page/ word pointer (2 bytes)
stack buffer

size of direct-page/ word result (2 bytes)
stack buffer

Stack Before Call:

Crdaed! Apccel

[

adarass of
g nama

o

Special -memary fog

- 5p

Part Hl: The System LoQdar

Stack After Call:

pravious contents
o, popa/Sfack STg
aw. EQQE‘J’.‘?IJE‘E oo,
- Savting oddess

LisgviD)
-+ 5P

Possible errors
51104 File is not a load file
$1105 System Loader is busy
31109 SegMum out of sequence
5110A legal load record found
31108 Load segment is foreign
$005ex Pral¥}38 16 error
§02xx Memory Manager error

Sequence of events

When the Inital Load function is calied, the following sequence of
evenis ooours

1. The function checks the TypeID and MainID felds of the
specified User [D.

a, If both fields dre nonzero, the Svstem Loader uses it o allocte

space for the segments 1o be loaded.
b, If the TypeID field is zero, the System Loader obtains a new

User ID from the User ID Manager, to assign to all segments of

that file. The new TypeID is given the value 1, meaning that
the new file is classified as an application

¢, M only the MainID field is zero, the System Loader obtains a
now User ID) from the User ID Manager, using the supplied
TypelD and AuxID.

The User 1D Manager (described in Apple (65 Toolbox
Refevence) guaraniees that User 1D'S are unique 1o each
application, tool, desk accessory, and so forth, See Appendix
I of this manual for a brief description of the User ID
format and the TypeID field.

Chaptar 17: System Looder Calls 223

e ot

224

2]

i

. The function checks the value of the spedial-memory flag 1 it

is TRUE (nonzero), the System Loader will not load any staric
segments into special memory (banks 300 and $01—see
Chapter 3), The special-memory flag does not affect the load
addresses of dynamic segments.

. The function calls ProDOS 16 1o open the specified (by

pathname) load file. If any ProDO5 16 ermor ocours, or if the file
is not a load file (type $B3-$BE), the System Loader retumns the
appropriate error code.

Nate: If the load file is a ProDOS & system file (type $FF) or a
ProDOS B binary file (ype $06), the loader will not load it

. Once the load file is opened, the System Loader adds the load-

file information to the Pathname Table, and calls the Load
Segment By Number function for each static segment in the load
file,

o If any statc segment loaded s an Initialization Segment
(segment kind=$100, the System Loader immediately transfers
conteol 10 it When the Systemn Loader regains control, it loads
the rest of the static segments without passing control 1o them.

O If a direct-page/stack segment (RIND=§12) Is loaded, the
System Loader returns the segment’s starting address and size

Note: The System Loader treals a direct-page/stack segment as a

locked, unpurgeable, static segment. The segment cannod be

moved or purged as long is the application is active, but i

becomes purgeable at shutdown,

o If any of the stalic segments cannot be loaded, the System
Loader aboris the load and returns the error from the Load
Segment By Number function

. Once it has loaded all the static segments, the System Loader

returns the starting address of the first segment (other than an
initialization segment) of load file 1 to the controlling program
It then transfers execution o the controlling program. The
controlling program itself is responsible for setting the stack and
direct registers and lor transferring control 1o the just-loaded
program.

Part Hl: The System Loader

Restart ($0A)

This function is called by a controlling program (such as a shell or 2
switcher) to ask the System Loader to resurrect 4 dormant
application—one that has been shut down (by the User Shutdown

functicn}, but is stll in memory,

Only programs that are restanable can be successfully resurrected
through this call. A restanable program always reinitializes its

il execules

and makes no assumptions about machine state each time

To make it restartable, a program may include a Reload segment
containing all necessary initalization information, A Reload
segment is always loaded from the file at startup, even when a

Program Is res arted

@ Mofe: The control

ng program that makes the Restart call is

responsible for making sure that the program it specifies is
indeed restartable. The System Loader makes no such checks

Funclion Mumber: 50A

Macre Name: Kestart

Parameters
Name Size ond Type
Input User D

Output User D

sarting address

address of direct-pages

stack buller

size of direct-page/
stack buffer

word value (2 bytes)
word result (2 bytes)
long word pointer (4 bytes)

word pointer (2 bytes)

word result (2 bytes)

Stack Before Calk

(resLat S

frasu 5
Liseni

- 5P

Stack After Call:

previouws corlents

dir._page
dir._ Dage/sstack ool

= sfodling oddvess o

1 Lisar

Possible errors

51101 Application not found
51105 System Loader Is busy
$1104 User 11} error

L0 ProDO5 16 error
SOace Memiory D\1;4:1agr_'r Error

Sequence of events

When the Restart function is called, the following sequence of

EVENLS OCCurs.

1, An existing, nonzero User [D must be specified (the Aux [D part
is ignored), If the User ID is zero, eror 31108 is retumed. IF the
Llser 1D is unknown o the Svstem Loader, error $1101 is

returned,

Chapter 17: System Looder Calls 225 224 Part |ll: The Systern Looder

Z. The Restart function can work only if all of the specified
program's static segments are still in memory. What that means
is that no segments in the Memory Segment Table with the
specified User [can have been purged.

a. The System Loader checks the memory handle of each
Memory Segment Table entry with that User [D. I none are set
1o NIL the segments are all in memory,

Iv. The System Loader then resurrects the application by calling
the Memory Manager to make each of the application’s
segments unpurgeable and locked,

¢. The loader reloads any Reload segments it finds, and executes
any initialization segments it finds,

d. The loader returns the application's complete User ID, the
first segment’s starting address, and the direct page and stack
information {from the Pathname Table) 1o the caller

3. If any of the application’s stalic segmenis are no lomger in
memory, the function does the following:

a. It calls the Cleanup routine to purge all references 1o that User
1D from the System Loader's tables and delete the User 1D
itself

b. 1t calls the Initial Load function 1o load the application. The

application receives a new User I, which is returned to the
caller

Chapter 17: Systemn Loader Calls 227

Load Segment By Number ($0B)
The Load Segment By Number routine is the workhorse function of
the System Loader. Other System Loader functions that load
s:_*gu:.énts do so by calling this function. 1t loads a specific load
segment into memory;, the segment is specified by is load-file
number, load-segment number, and User 1D,

% Note: Applications use this function to manually load dynamic
segments. An application may also wse Load Segment By
Mumber o manually load a static segment. However, in that
case the System Loader does not patch the correct address of
the newly loaded segment onlo any existing references to it
‘Therefore the segment can be accessed only through 18 starting

" address.

Funclion Number: S0B

Mocro Nome: LoadSegium

Parameters
Hame Size and Type

Input User 112 word value (2 bates)
load-file numbser wird vahue (2 byles)

lpad-segment number word value (2 bytes)

Output address of segment long word pointer (4 bytes)
Stack Before Call:

pravicus contants

— {rasuat space) 1
Liseri)

fpod-file number

isod-segment no

228 Part lll: The Systerm Looader

Stack After Call:

pravious confents

oddress of]
sagrmeant
-+ 5P

Possible errors
£1101 Segment not found
£1102 Incompatible OMF version
£1104 File is not a load file
51105 System Loader &s busy
£1107 File version error
31109 Seghum oul of sequence
$1104 lliegal load record found
51108 Load segment is foreign
$00: ProD0s 16 error
$02xx Memory Manager erfor

Sequence of events

When the Load Segment By Number function is called, the
following sequence of events oocurs,

1

First the loader checks to find out if the requested load segment
is already in memory: it searches the Memory Segment Table
te determine if there is an entry for the segment. If the entry
exists, the loader checks the value of the memory handle to
find oul whether the corresponding memory block is still in
memory. [f so, the function terminates without returning an

error. If an entry exists but the memory block has been purged,
the entry is deleted,

If the segment is not already in memary, the System Loader

looks in the Pathname Table to get the load-file pathname from
the load-file number

The System Loader checks the file type of the referenced fle. If

it is not a load file (lype $B3-3BE), then error $1104 is
returned

Chapter 17: Systern Loadar Calls 229

230

Part Iil: The System Loader

If the file is type $B4 (run-time library file), the System Loader
compares the file's modification date and time values to the file
date and file tme in the Pathname Table. If they do not match,
error $1107 is returned and the load is not pedformed.

Prol}5 16 is called to open the file, If ProlX05 16 cannot open
the file, it returns an appropriale ercor code.

After ProDO5 16 successfully opens the load file, the Systiem
Loader searches the file for a load segment corresponding 1o
the specified load-segment number. If none is found, efror

§1101 is reurned.

If the load segment is found, its header is checked (segment
headers are described under "Object Module Format” in
Apple Has Programmer's Workshop Reference). If the
segment's OMF version number is incompatible with the
current System Loader version, error $1102 is returned. If the
value in the header's SEGNUM ficld does not match the
specified load-segment number, error $1109 is returned, Il the
values in the NUMSEX and NUMLEN ficlds are not O and 4,
respectively, error $1108 is returned.

If the load segment is found and the header is corredt, a
memory block of the size specified in the LENGTH feld of the
segment header is requested from the Memory Manager. I the
oRG field in the segment header is not zero, then a memory
block starting at the address spedified by CRG s requested
(ORG is normally zero for Apple (1G5 programming; that is,
most segments are relocatable). Other segment attribules are
set according 1o values in other segment header fields—see
Chapier 14,

If 2 nonzero User 1D is specified, the memory block &5 given
that User ID. If the specified User 1D is 2zero, the memory block
is given the current User ID (value of USERID global
varable).

2. If the requested memory is not available, the Memory Manager o — e —
and System Loader use these techniques 1o free space: . Unload segmﬂnf B'f Number ($DC]

d. The Memory Manager unloads unneeded segments by
purging their corresponding memory blocks. Blocks are
purged according to their prrge levels, For example, all
level-3 blocks are purged before the first level-2 biock is)
purged. Any dynamic segment whose memory block's Funcilen Mumber: 50C
purge level is zero cannot be unicaded

b. If all purgeable segments have been unloaded and the
Memory Manager still cannot allocate enough memory, it .
moves any mouable blocks (0 enlarge contiguous memaory 7
areas. Parameters

c. IF all eligible memory blocks have been purged or moved,
and the Memory Manager stll cannot allocate enough

This function unloads a specific load segment from memory, The
segment is specified by its load-file number and load-segment
number, and lts User ID.

Mocro HNome: UnLoadSegium

Hame 5kze and Type L |
memory, the System Loader Cleanup routine is called 1o
: - . = ; g
free any unused parts of the System Loader's memary. The Input User I word value (2 bytes)
Memory Manager then wies once more to allocate the load-file Aumber word value (2 bytes)
requested memaory, ha A viilas {3 Bitee)
. load-segment number word value Le DiRes
d. If the Memory Manager is still unsuccessful, the System B
Loader returns the last Memory Manager error that Crutpart {nonel
ooourmed
10. Once the Mn‘-l‘l’lur}." .'-{.magm has allocated the rf_*qu(r_s[gd Stack Before Call:
memory, the System Loader puts the load segment into P
vieus canfants
memory, and processes the relocation dictionary (if any). :"'5"'"1'_"’“',?" i I
@ Mote: If any records within the segment are not of a proper type I'W*trzl"l::::.nf; r
(3E2, $E3, 5F1, $F2, or 3000, error $110A s returned. See ood-seQmeT —5p
Appendix [for an explanation of record types.

11. An entry for the segment is added to the Memory Segment Stack After Call:
Tahle

12. The System Loader returns the starting address of the segment previous contants .
1o the controlling program. 3¢

Possible errors

§1101 Segment not found

$1105 System Loader is busy

$0000c ProlHO5 16 error

S0Zace Memory Manager error
Chapter 17: System Loader Calls 231 73z Part lil: The Systern Looder

Sequence of events

When the Unload Segment By Number function is called, the
following sequence of events ooours.

1. The System Loader searches the Memory Segment Table for the

specified load-file number and load-segment number. If there is
no such entry, error $1101 is returned.

2, If the Memory Segment Table entry Is found, the loader calls the
Memory Manager 10 make prrgeable (purge level = 3) the
memaory block in which the segment resides.

3. The loader changes all entries in the Jump Table that reference
the unlaaded segment to thelr unloaded states,

Special conditions:

O 1If the specified User ID is zere, the current User 1D (value of
USERIDY is assumed,

o If both the load-file number and Ioad-segment number are
nonecro, the specified segment is unloaded regardless of
whether it is static or dynamic, If either input is 2ero, only
dymamic segments are unloaded, a5 noted next.

O If the specified load-file number is zero, all dynamic segments
for that User ID are unloaded,

If the specified Ioad-segment number is zero, all dynamic
segments for the specified load file are unloaded.

@ Note: If a static segment is unloaded, the application that it is
part of cannot be restarted from a dormant state. See "Restan”
and *Ulser Shutdown,® in this chapter.

Chaptar 17: Systen Loader Calls 233

Stack Before Call:

pravipus confents
(resull pace)
{result space]
rrasull spoce)
L (resulf spocel -1

LisariD
B oodrass of E
Joad-fils nama
aagress of

™ ioad-segmeant name |

Load Segment By Name ($0D)

This Fenction loads a named segment into memory. The segment i§
named by its load file's pathname, and its segment name (from the
sEGNAME field in the segment header). A nonzero User [0 may be
specified if the loaded segment is to have a User I different from
the current User ID.

Function Mumber: 300

Macto Mome: LoadSagiame

Parameters
Harme Sire and Type

Input: User 1D word value (2 bytes)
address of load-file long word pointer (4 bytes)
name
address of load-segment long word pointer (4 bytes)
name

long word pointer (4 bytes)
User Id waord result (2 bytes)
load-fle number

Output: address of segment

word result (2 bytes)

load-segment number word result (2 bytes)

5" possible errors
Stack After Call: 51101 Segment not found
51104 File is not a load file
|_previous contents | $1105 System Loader is busy
[Hzodsagment ng, $1107 File version error
img;*:%nc 51109 Seghum out of sequence
M oodesof $110A llegal load record found
segmant = $110B Load segment is foreign
u-5P 000 PeaDOS 16 error
S0 Memory Manager error
234 Part lll: The System Looadar

Sequence of events

When the Load Segment By Name function s called, the following
sequence of events occurs.

The System Loader gets the load-file pathname from the pointes
given in the function call,

5]

The System Loader checks the file type of the referenced file,
from the file’s disk directory entry. I it is not a load file (type
SB3-5BE), error 51104 is returned

If it is a load file, the loader calls ProDOS 16 1o open the file. If

ProDO5 16 cannot open the file, it returns the appropriate error
code,

L

s

+ After the load file has been successfully opened by ProDOS 16,
the System Loader searches the file for 2 segment with the
specified name. If it finds none, error $1101 is returmed.

5. 1f the load segment is found, the Syslem Loader notes the
segment number. 1L also checks the Pathname Table 1o see if the
load file is listed. IF the file is listed, the loader gets the load file
number from the wabie; if not, it adds 3 new entry to the
Pathname Table, assigning an unused file number 1o the load
file. If the Jump-Table-loaded flag in the Pathname Table is
FALSE, the loader loads the Jump Table segment (if any) from
the load file and sets the Jump-Table-loaded flag to TRUE

. Mow that it has both the lpad-file number and the segment
number of the requested segment, the System Loader calls the
Load Segment By Number function to lead the segment, I the
Load Segment By Number function returns an error, the Load
Segment By Name function returns the same error, I the Load
Segment By Number function is successful, the Load Segment By
Name function returns the load file number, the load segment
number, the User ID, and the starting address of the memory
block in which the load segment was placed.

Chapter 17: Systerm Loader Calls 235

Unload Segment ($0E)

This function unloads the load scgment containing the specified

address, By using Unload Segment, an application can unload a
segment without having to know its load-segment mumber, load-file
number, name or User 1D,

Funclon Number: $0E

Mocro Name: UnloadSeg

Parameters
Hame Size and Type
Input address in segment long word pointer (4 bytes)
Wlpul Lisr 1y el lesdls C2 LF?I.Lﬂ._I
load-file number word result (2 bytes)

load-segment number word result (2 bytes)
Stack Before Call:

pevious conlants

[
{resull SpOce

= ccicvess in segrient =

= 5P
Stack After Call:
pravious contents |
iood-segmant_na |
\ood-fig na
Lisgnl
5P

Part ll: The Systermn Loader

Possible errors Get Load Segment Info ($0F)

5?1'1_.” Segment not found This function retums the Memory Segment Table entry
51105 System Loader is busy comesponding to the specified (by number) load segment.
002 ProlED5 16 emar

e Memory Manager error Function Mumber: $0F

Mocro Name: GetLoadSeglnfo

E&qu&n ce of events

When the Unload Segment function is called, the following Parameters
sequence of evenls occurs

1. The function calls the Memory Manager to identify the memeory
block containing the specified address. IF the address is not

within an allocated memory block, error $1101 5 returnied Input User I word value (2 bytes)

Name Size and Type

2. If the memory block is found, the function wses the memory load-file mumber word value &b}'{ﬂ'—&}
handle returmed by the Memory Manager to find the block's User vies)
| ID. It then scans the Memory Segment Table for an entry with load-segment number word value (2 b
| that User 1D and handle. If no such entry is found, eror $1101 is address of user buffer long word pointer (4 bytes)

relurned.

: Output (filled user bulfer)
3. If the Memory Segment Table entry is found, the function does

one af two things: Stack Before Call:
a. I the Memory Segment Table entry refers to any segment

other than a Jump Table segment, the function extracts the previous contents |
load-file number and load-segment number from the entry llsTj
< : ood-ie no
b. If the Memory Segment Table entry refiers to a Jump Table ko s0gMEnt no.
segment, the function extracts the load-file number and load TS ety
" 1 1
segment number in the fump Table entry at the address earbuler

e . 5P
specified in the function call,

4. The function then calls the Unload Segment By Sumber function tack Call
1o unload the segment . . AT '

The outputs of this function (load-fle number, load-segment

1 pravious contents I
number, and User ID) can be used as inpuls 1o other System Loader P

funciions such as Load Segment By Number,

Possible errars

51101 Entry not found

51105 Systemn Loader is busy

$00x Prol¥3S 16 error

02 Memory Manager error
Chapter 17: Systemn Loader Calls 237 238 Part (I The System Loader

Sequence of avents

When the Get Load Segment Info function is called, the following
sequence of evenls ooours,

1. The Memory Segment Table is searched for the specified entry. If
the entry is not found, error $1101 s renumed.

. If the entry is found, the contents of the entry (except for the link
pointers) are copled into the user buffer.

Chapter 17: System Looder Calls 239

Get User ID (510)

This function returns the User 1D associated with the specified
pathname. A controlling program can use this function to
determine whether it can restart an application of must perform an
initial load

Funclion Number: 310

Mocra Nome: GetlUsecID

Parameters

Haoma Sipe and Type x:
Input address of pathname long word pointer (4 bytes)
Ouiput User ID word result (2 bytes)

Stack Before Call:

Stack After Call:

& zp

Tha System Loader

——

Possible errors Get Pu-ihnuma (C10))

5!1{11 I_-‘.nm_v not found This function returns the pathname associated with the SE‘“‘_:E":_‘J
§1105 Syslem .Lnnr!er 18 busy User ID. ProDO5 16 uses this call 1o set the application prefix (17
th?.nc ProDO5 16 error for & program that is restarted from memory,

S02acx Memory Manager error

Function Number: 511

Macro Name: GetPathname

Sequence of events

When the Gel User ID function is called, the following sequence of

evenls ooours Parameters

1. The System Loader searches the Pathname Table for the
specified pathname. If the input pathname is a partial pathname Nome Site ord yps
and stans with a prefix number other than 1/ or 2/, it is .
expanded to a full pathname before the search,

Input User 1D word value (2 bytes)
2. If it finds a match, the loader returns the User 1D from that entry File number word value (2 bytes)
in the Pathname Table, :
Outpiat Address of pathname long word result (4 bytes)

Stack Before Call:

pravious contents |
L frasut Jhoce)
| UserD
o= féer Aumbe

Chaopter 17: Systemn Looder Calls 241 242 Part lll: The Systerm Loader

Possible errors

User Shutdown ($12)

i} [o} : i v _
$1101 Entry not ‘r"l'”"'l A This function is called by the controlling program to close down an
51105 system Loader is busy R i

(b : application that has just terminated
00200 ProlD5 16 error i ;
S Memory Manager error

Funchlion Number: 512
Mocre Name: UserShutdown
Sequence of events

When the Get Pathname function is called, the following sequence Parameters
of evenls occurs

The System Loader searches the Pathname Table for the

o Hame Size ond Type
specified User 1D and file number,
2. If it finds a match, the loader returns the address of the pathname Input: User ID word value (2 bytes)
from that entry in the Pathname Table quit flag word value (2 bytes)
Cutput: User I word result (2 bytes)

Stack Before Calk

Stack After Call:

pravious © anfents
Lisanl}

- op

Possible errors

51105 System Loader is busy
SO0y Prald05 16 error
Fldex Memory Manager error

Chapter 17 Systemn Looder Calls

o]
£
[

244 Part Il The System Loodes

Sequance of avents

% Naote: This function is designed to suppon the options providad
in the ProD0O5 16 QUIT function. The quit flag in this call
corresponds o the flag word parameter in the ProDOS 16
QUIT call Only bits 14 and 15 of the flag are significant: If bit
15 is set, the quitting program wishes control 1o return o It
eventually; if bit 14 is set, the program is restartable, See the
description of the Restart function in this chapter,

When the User Shutdown function s called, the following sequence

of events occurs

1. ‘The System Loader checks the specified User ID, IT it {s zero, the
loader assumes it is the current User ID (= value of USERID
global variable). In any case, loader ignores (by setting 1o 2erc)
all values in the AuxID field of the User ID.

2. The loader checks the value of the quit flag.

a. If the quit flag is zero, the Memory Manager disposes
(permanently deallocates) all memory blocks with the
specified User 1D, The System Loader then calls its Cleanup
routine to purge the loader's internal tables of all references o
that User I, The User 1D itself is deleted so that the system no
longer recognizes it

In this case the application is completely gone. It cannot be
restarted from memory or quickly reloaded

b. If the quit flag is $8000 (bit 15 set to 1), the Memory Manager
pruarges (temporarily deallocates) all memory blocks with the
specified User 1D, The System Loader's internal tables for that
User 1D, including the Pathname Table entry, remain intact.

In this case the application can be reloaded quickly but it
cannol be restarted from memory,

c. If the quit flag has any other value, the Memory Manager

o

dispages all blocks corresponding to dynamic segments with
the specified User 11D

makes purgeable all blocks corresponding to statc segments
with that User 1Dy

O perpes all other blocks with that User [D

In addition, the System Loader removes all entries for that
User 1D from the Jump Table Directory.

Chapter 17: Systemn Loader Calls 245

244

The application is now in a dormant state—disconmected but
not gone, It may be resurrected very quickly by the Sysiem
Loader because all its state segments are still in memory
Once any of its static segments is purged by the Memory
Manager, however, the program is truly lost and must be
reloaded from disk if it is needed again

Part ll: The System Loodar

Jump TEge_l.aua

This function is called by an unloaded Jump Table entry in order o
load a dynamic load segment. Besides the function call, the
untloaded Jump Table entry includes the load-file number and load-
segment number of the dynamic segment 1o be loaded. The Jump
Table is described in Chapter 15,

Funclion Number: none

Mocro Name: none

quﬂm&"ﬂ rs
Hame Slre and Type

Input User ID word value (2 bytes)
load-file number word value (2 bytes)

load-segment number word value (2 bytes)
load-segment offset long word value (4 bytes)
Cutput (none)

Stack Before Call:

previous comtants
L]

Baa-fe no
FOTIEn’ g

[=

—load-sagment offiel =

Chapter 17: System Looder Calls 247

248

Stack After Calls

| previous ::'_E-H'EF o] |
|-sp

& Note: Because this function is never called directly by a
controlling program, the program need not know what
parameters it requines

Possible errors

$1101 Segment not found
£1104 File is not a load file
£105 System Loader is busy
$00ax Prold5 16 error
S02aex Memory Manager error

Sequence of events

When the Jump Table Load function is called, the Tollowing

sequence of evenls Doours

1. The function calls the Load Segment By Number function, using
the load-file number and load-segment number in the Jump
Table entry. If the Load Segment By Number function returns any
errar, the System Loader considers it a fatal error and calls the
Svstem Failure Manager

=]

If the Load Segment By Number function successfully loads the
segment, the Jump Table Load function changes the: Jump Table
entry to its fogded state: it replaces the [51 1o the Jump Table
Lead function with a JML to the absolute address of the reference
in the just-loaded segment

3. The function tansfers control © the address of the reference

Part II: The Systerm Looder

——

Cleanup

This routine is used to free additional memory when needed, It
scans the System Loader's intermal able and removes all entries that
reference purged or disposed segments

% Note: Because this function is never called directly by a
controlling program, the program need not know what
parameters it requines

Funclion Number: none

Maocro Name: none

Parameters

Name Slze and Type
Input User 1D word value (2 bytes)
Output (none)

Stack Before Calk

-+ p

previous contents
_11— 5P

Possible errors

Lnane}

Choptar 17: Systemnm Loadear Calls 249

Sequence of evenls
When the Cleanup routine is called, the following sequence of
EVEnls ooours
If the specified User ID is 0
1, The System Loader scans all entries in the Memory Segment
Table.
b. All dynamic segments for all User ID¥s are purged
2. Il the spedified User ID) is nonzero
a. The System Loader scans all entries in the Memory Segment
Table wilh that User I
Al load segments (both dynamic and stauc) for that User ID
are purged
c. All entries in the Memory Segment Table, Jump Table
directory, and Pathname Table for that User 1D are deleted,

250 Part i The Systermn Loader

——

Appendixes

Appendix A

ProDOS 16 File Organization

This appendix describes in detail how ProDOS 16 stores files on
disks. For most applications, the operating system insulates you
from this kevel of detail. However, you must use this information if,
for example, you want to

list the Nles in a directory
O copy a sparse file without increasing the file's size
O compare (wo sparse files

Keep in mind that ProDOS B and ProDOS 16 have identical file
structures. The information presented here applies equally to bath
sysiems

This appendix first explains the organization of information on
volumes, Next, it shows the format and organization of volume
directories, subdireciories, and the various stages of standard files.
Finally It presents a set of diagrams showing the formats of
individual header and entry fields,

& Note; In this appendix, format refers to the arrangement of
information (such as headers, pointers and data) within a file,
Chganization refers to the manner in which a single file is stored
on disk, in terms of ndividueal 512-byie blocks.

253

254

When a volume is formatted for use with ProDdO5 16, is surface is
partitioned into an array of tracks and sectors. In accessing a
volume, ProlO5 16 requests not a track and sector, but a logical
block from the device comesponding to that volume. That device's
driver translates the requested block number into the proper track
and sector number; the physical location of information on 2
volume is unimporant w ProDOS 16 and to an application thar uses
ProDOS 16. This appendix disousses the organization of
information ©n a volume in terms of logical blocks, not tracks and
sectors

When the volume is formatted, information needed by ProDOS 16
is placed in specific logical blocks, starting with the first block
(block 03, A loader program is placed in blocks 0 and 1 of the
volurmne, This program enables ProDOS 16 (or ProDOS 8 o be
booted from the volume, Block 2 of the volume is the key block
(the first Block) of the volume directory file; it contains descriptions
of (and pointers 1) all the fles in the volume directory. The
volume divectory oocupies a number of consecutive blocks,
typically four, and is immediately followed by the volume bit
map, which reconds whether each block on the volume is used or
unused. The volume bit map ocoupies consecutive blocks, one for
every 4,096 blocks, or fraction thereof, on the volume, The rest of
the blocks on the disk contain subdirectory file information,
standard file information, or are emply. The first blocks of a
volume look something like Figure A-1,

Lo Wolume LE L Yolume Yoluma LR Yoluma
Cirac oy Directony Bit Mo Bit Moo
ey Dlock) / {lost block) | ified Diock) ‘_/ (ot biock)
Figure A-1
Block organlzation of a walume
Appendiies

The precise format of the volume directory, volume bit map,
subdirectory files and standard files are explained in the following
sections,

Format and organization of directory ﬂla_.;.

The format and organization of the information contained in
volume directory and subdirectory files is quite similar. Each
consists of a key block followed by zero or more blodks of additional
direciory information. The fields in a directory's key block are:

O a pointer to the next block in the direciory
O a header that describes the directory

O a number of file entries describing, and pointing to, the files in
that directory

1 zerd or more unused byies
The fields in subsequent (nonkey) blocks in a directory are:
O pointers (o the preceding and succeeding blocks in the directory

0 a number of entries describing, and pointing 1o, the files in tha
directory

0 zero or more unused byles
The format of a directory file is represented In Figure A-2

Koy Block Any Block Liost Block
0 e s oo — ponlar |e— s e o] DONTET |

POINE e w8 ——] O e a
hiegder fie ariry fike enlry
g antry fie omdny i antry

I mare | I more | | moem o

ki i 1 [1 [

1 Ma | fle i te

| aririey | 1 i | | antios |

Il:'l 1 I I ant Hjl I(‘ Hes |

—
e srilny filg gnley
(¥) nigad
Bace mooca
Figure A-2
Directory fle format and arganization
Appendix A: ProDOS 146 Fle Orgontzation 2E5

=

e

254

Appandites

The header is the same length as all other entries in a directory file
The only difference between a volume directory file and a
subdirectory file is in the header format

Pointer fields

The first fowr bytes of each block used by a directory file contain
pointers to the preceding and succeeding blocks in the directory
file, respectively. Fach pointer is a two-byte logical block
number—Ilow-order byte first, high-order byte second. The key
block of a directory file has no preceding bloclk; its first pointer is
zero, Likewise, the last block in a directory file has no successor; s
second pointer Is zero,

& Note: The block pointers described In this appendix, which
hold disk addresses, are two bytes long. All other ProDOS 16
pointers, which hold memory addresses, are four bytes long
In either case, Prol»05 16 pointers are always stored with the
low-onder byte first and the high-order byte last See Chapter 3,
"PralO5 16 and Apple 1165 Memory.”

Volume directory headers

Block 2 of a volume is the key block of that volume's directory file,
The volume directory header is at byte position $0004 of the key
bleck, immediately following the block’s rao pointers, Thirteen
fields are currently defined to be in a volume directory

header: they contain all the vital information about that volume
Figure A-3 illustrates the format of a volume directory header.
Following Figure A-3 is a description of each of its felds.

Byte of Fiadd
Block Length
ol
1
.) —
k]
& | storage_fype mams_lengih | byte
5 b= —
— file_name === 153 bytes
13 r _1
e L g
il {resarvad) == B bvied
;_: = creqie_date 4 2owtes
; :E - crpate time - 2 bytes
.4 WEIEOn 1 Evie
21 min_versian 1 byle
20 OCCBES I tyle
) entylength] 1byie
2 |__entries_par block | tyie
-1 F = F
2 - a_count - 2 byles
a7 _'_ pRC L LT ——
s Ditmap painter o 2 bytes
= sty ” _-
o4 otal_blocks - 2 byias
Flgure A-3

The volume directory haodar

slorage_type ond nome_lengih (1 byte Two four-bit (nibble)
fields are packed into this byte, A value of $F in the high-order
nibble (storage type) identifies the current block as the key
block of a volume directory file, The low-order nibble contains the
length of the volume's name (see the file name field, below),
The value of name length can be changed by a CHANGE PATH
call

file_mome (15 bytes): The first 7 bytes of this field, where 1 is the
value of name length, contiin the volume's name, This name
must conform (o the file name (volume name) syntax explained in
Chapter Z. The name does not begin with the slash that usually
precedes volume names, This field can be changed by the
CHANGE_PATH call

reserved (8 bytes): Reserved for fumere expansion of the file
sysiem.

Appendix A: ProDOS 14 Fle Crganization 257

258

Appandhias

create_dale (2 bytes): The date on which this volume was
initialized. The format of these bytes is described under “Header

and Entry Fields,” later in this appendix,

creale_time (2 bytes): The time at which this volume was
initialized, The format of these bytes is described under "Header
and Entry Fields,” later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or
ProD¥5 16 under which the file pointed to by this entry was created,
This byte allows newer versions of Prolx05 16 to determine the
format of the file, and adjust their inerpretation processes
accordingly. For PraDOS 16, version = 0,

4 Note: Version in this sense refers to the file system version
only. At present, all ProDOS operating systems use the same
* file system and therefore have the same file system vermsion
number (03, In particular, the file system version number Is
unrelated to the program version number rewrned by the
GET_VERSION call

min_vermlon: Reserved for future use, For Prold0OS 16, It is 0,

access (1 bytek Determines whether this volume directory can
be read, written, destroyed, or renamed, The format of this Geld s
described under “Header and Entry Fields," in this appendix.

enlry_length (1 byte): The length in bytes of each entry in this
directory. The volume directory header itsell is of this length. For
Pro[d35 16, entry length = §27,

oniries_per_block {1 byte): The number of entries that are stored
in each block of the directory file. For ProDOS 16,

entries_per_block = 500
Me_counl (2 bylas) The number of active file entries in this

directory file. An active file is one whose storage type is not(
Figure A-5 shows the format of file entries.

bil_map_polnter (2 bytas): The block address of the first block of
the volume's bit map. The bit map occupies consecutive blocks,
one for every 4,096 blocks (or fraction thereof) on the volume. You
can calculate the number of blocks in the bit map using the

tetal blocka field, described below,

The bit map has one bit for each block on the volume: a value of 1
means the blodk is free; O means it is in wse, I the number of blocks
used by all files on the volume is not the same as the number
recorded in the bit map, the directory structure of the volume has
been damaged.

lolol_blocks (2 bytas): The total number of blocks on the volume.

Subdirectory headers

The key block of every subdirectory file is paointed to by an entry in a
parent directory; for example, by an entry in a volume directory
(Figure A-2). A subdireciory's header begins at byte position $0004
of the key Block of that subdirecory file, immediately following the
wo pointers

In format, a subdirectory header is quite similar to a volume
directory header (only its last three fields are differenty, A
subdirectory header has fouricen fields; those fields contain all the
vital information about that subdirectory, Figure A-4 Dlustrates the
format of a subdirectory header. A description of all the Felds in
the header follows the figure.

Byle of Field
Block Length

oL |

: 4

20

k]

4 | shorage_type|name_lengih Enli
5

= fils_namea ﬁ:fﬂv'l.'.\
M i

14 1

= {resdrved) == B ytes
B B
ic
oF cracte_date = 2 bvtas
1E TP

i craate_tima - 2 bytes
0 VEIFSIon | byte
21 min_wirshon 1 byte
2 OCCREs 1 byle
bk | eniny_kength 1 byle
24 aniries_paf Block I bvie
b}
= e _court e =T
2 &
[panent poirter = 2 biytes
2 | parent_aniry_number | byte
245 p:\rl"'"u.'_ani"v_lﬁi‘al'l | byt

Figure A-4

The subdirectory heoder

Appendix A: PraDOS5 16 Flle Organization 259

260

Appendizes

slorage_type and name_length (1 byte): Two four-bit (nibble)
fields are packed into this byte. A value of SE in the high-order
nibble (storage_type) identifies the current block as the key
block of a subdirectory file. The low-order nibble contains the
length of the subdirectory's name (see the £ile name field,
below). The value of name_length can be changed by a

CHANGE _PATH call

file_name (15 bytes): The fist mame_length bytes of this Held
contain the subdirectory’s name. This name must conform to the
file name syntax explained in Chapter 2, This field can be changed
by the CHANGE PATH call.

reserved (8 bytes): Reserved for fumre expansion of the file
system.

creale_dale (2 bytes): The date on which this subdirectory wis
created, The format of thess bytes is described under “Header and
Entry Fields,* later in this appendix.

create_lime (2 bytas): The time at which this subdireciory was
created. The format of these bytes is described under “Header and
Entry Fields,” later in this appendix

version {1 byte): The file system version number of ProDdO5 B or
ProDOS 16 under which the file pointed 1o by this entry was created
This byte allows newer versions of ProDOS 16 (o determine the
format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, veraion ={.

% Note: Version in this sense refers to the file system version
only. At present, all ProDOS operating systems use the same
fite system and therefore have the same file system version
number (0). In particular, the file system version number i
unrelated to the program version number returned by the
GET_VERSION cafl.

min_version {1 byte} The minimum version number of ProlOs 8
ar Peold0S 16 that can acoess the information in this file, This byte
allows older versions of Prold05 8 and Prold05 16 1o determine
whether they can access newer files. For ProDOS 16,

min_version =0

access {1 byte): Determines whether this subdirectory can be
read, written, destroved, or renamed, and whether the file needs
be backed up. ‘The format of this field is described under *Header
and Entry Fields,” in this appendix. A subdirectory's access byie
can be changed by the 38T _FILE INFO and

CLEAR BACKUP BIT calls

entry_length (1 byte): The length in bytes of each entry in this
subdirectory. The subdirectory header itself s of this length. For
ProDOS 16, entry_length = §27

entres_per_bleck (1 byta): The number of entries that are stored
in each block of the directory file. For ProDOS 16,
entries_per block = 30D,

m-_l.:_umt (2 bytes): The number of active file entries in this
subdirectory file. An active file is one whose storage type is
not 0. See “File Entries” for more information about file entries,

parent_polnter (2 bytes): The block address of the directory file
block that contains the entry for this subdirectary. This and all

other two-byte pointers are stored low-order byte first, high-order
byie, second.

pumpf_qnw_mmb-r{l byta): The entry number for this
subdirectory within the block indicated by parent pointer.

p_uun!,_mrrv_lnngfh {1 byta): The entry_length for the
directory that owns this subdirectory file. Note that with these last
three fields you can caloulate the precise position on a volume of
this subdirectory’s file entry, For ProDOS 16,

parent_entry length = £27,

File enfries

Immediately following the pointers in any block of a directory file
are a number of entries. The first entry in the key block of a
directory file is a header, all other entries are file entries. Each
entry has the length specified by that directory’s entry length
fietd, and each file entry contains information that describes, and
points 1o, a single subdirectory file or standard file. I

An entry in a djn:_dmv file may be active or inactive, that Is, it may
ar may nol describe a file currently in the directory, If it is inactive,

the first byte of the entry {storage_type and name_length)
has the value zero. -

The maximum number of entries, including the header, in a block
of a directory is recorded in the entries per bleck field of
that directory’s header. The total number of active file entries, not
including the header, is recorded in the £ile count field of that
directory's header, =

Figure A-5 describes the format of a file entry.

Appendix A: PraDOS 16 Flle Organization 281

242

Appandide

Byte of Fiald
Block Length

o [Fiofopge_fype] nome_lengin | 1 oyte
1

i fila_nama == 15 bytes
Py ..

o filg_fype 1 byt
u - key_pointer - 2 bytes
}i = olocks_used -1 2 bytes
15[=

8 EOF 1 dbyles
nr

18 B - Zbytes
el creote_data E
1:3 - create_time = Zbytes
= Warsion 1 byta
i[] Fruif_VErsson 1 byte
E OCCEEs | byte
;; - oux_type — 2 bytes
5‘12 B mod_date o 2bytes
%i - miod_time - 2bytes
g - neader_pointar =1 2 byies

Figure A-5
The file entry

storage_type and name_length (1 bytel: Two four-bit (nibhle)
fields are packed into this byte. The value in the high-order nibble
{storage type) specifies the type of file pointed o by this file
entry:

51 = Seedling file
§2 = Sapling file
3 = Tree file

%4 = Pascal area
5D = Subdirectory

Seedling, sapling, and uee files ase described under "Format a.rui
Organization of Standard Files” in this appendix. The low-order
nibhle contains the length of the file's name (see the £ile nama
field, below). The value of name_length can be changed by a
CHANGE PATH call

flle_name (15 bytes): The first name_length bytes of this field
contain the file's name. This name must conform 1o the file name

syniax explained in Chapter 2. This field can be changed by the
’:HH.T\;GE_PATH call,

fle_type (1 byte): A descriptor of the internal format of the file.
Table A-1 (at the end of this appendix) is a list of the currently
defined values of this byte.

key_polnter (2 bytesy: The block address of:

O the master index block (if the file is a tree Ale)

0 the index block (if the file is & sapling fle)
O the data bleck (if the fle is a seedling file)

blogks_used (2 byltes): The 1otal number of blocks acually used
by the file. For a subdirectory file, this includes the blocks
containing subdirectory information, but not the blocks in the fles
peinted to, For a standard file, this incdudes both informational
blocks (index blocks) and data blocks. See “Formal and
Organization of Standard Files" in this appendix.

EOF (2 bytes): A thres-byte integer, lowest byte first, that
represents the (o6l number of bytes readable from the file. Note
that in the case of sparse files, EOF may be greater than the number
of bytes actually allocated on the disk

creale_date (2 bytesk The date on which the file pointed to by
this entry was created. The formal of these bytes is described under
“Header and Entry Fields,” later in this appendix.

create_lime (2 bytes): The ume at which the file pointed (o by
this entry was created, ‘The format of these byies Is described under
“Header and Entry Fields," later in this appendix.

verslon (1 byte) The file system version number of ProDOS 8 or
Prol05 16 under which the file pointed 1o by this entry was created,
This byte allows newer vemsions of ProDOS 16 to determing the
formaz of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =0

Appendlx A: ProDOS 14 Fle Organlzaton 243

Nofe: Version in this sense refers to the file system version
only. At present, all ProDO5 operating syslems use the samo
file system and therefore have the same file system version
number. The file system version number iz unrelated 1o the
program version number returned by the GET_VERSION call

min_version {1 byte): The minimum wErsion number of ProDOs B
ar ProDXO8 16 that can access the information in this file. This byie
allows older versions of ProDOS 8 and PraDOS 16 o determins
whether they can access newer files. For Prol}Os 16,
min_version =0

access (1 byte): Determines whether this file can be read,
written, destroved, or renamed, and whether the file needs 10 be
backed up, The formal of this field ts described under "Header and
Entry Fields,” later in this appendix The value of this field can be
changed by the SET_FILE_INFD and CLEAR BACKUF BIT
calls, ¥ou cannot delete (destroy) a subdireciory that contains any
files.

aux_type (2 bytesk A general-purpasc field in which an
application can store additional (nformation about the internal
farmat of 2 fle, For example, the ProDOS & BASIC system progm
uses this feld to recored the load address of a BASIC program of
hinary file, or the record length of a text file.

mod_date (2 bytes): The date on which the last CLOSE
pperation afier 2 WRITE was performed on this file. The formit of
these byies is described under "Header and Entry Fields,” later in
this appendix. This feld can be changed by the SET_FILE_INFD
call

mod_fime (2 bytes): The time at which the last CLOSE operation
afier a WRITE was performed on this file. The format of these
bytes is described under “Header and Entry Flelds,” later in this
appendix. This field can be changed by the SET_FILE_INFO
call,

header_polnter (2 bytas): This field & the block address of the key

block of the directory that owns this file entry. This and all two-byie
painters are stored low-order byte first, high-order byte second.

Cpan|DirPathname. RatfNum)}

ThisBlock
Entcylangth
EntriesPer3lock

FileCount

Reading a directory file

Eis section deals with the general techniques of reading from
wgingmﬁ]es$u[with the specifics. The ProDOS 16 calls with
i se techniques can be implemented a i i

Chapters 9 and 10. ’ e

Before you can read from a directory, you must know the directony's
pathname. With the directory’s pathname, you can open the o
directory file, and obtain a reference number Cref_num) for that
open file. Before you can process the entries in the direciory, you
must read three values from the directory header: rl

O length of each entry in the directory (eniry_lengehy

O number of entries in cach block of the directony
(entries_per_block)

0 total number of files in the dircctory (fife_couns),

Using the reference number to identify the file, read the first 512
bytes from the file, and into 2 buffer (ThisBlock in the followin
example). The buffer contains two two-byte pointers, followed b y
the entries; the fisst entry is the directory header, ‘The three valu }
are at positions $1F through $22 in the header (positions $23 -
through 526 in the bulfer), In this example, these values are

assigned (o the variables Entrcvlength i
L Entr
and FileCount, : T T A

{Get reference numbar)

Read5liBytas (RefHum) ¢ [RBead a block late

buffer)

Thiat Fla
ThlsBloek [523]; 1Ge -] T =
£4] 15 directory infol

ThisBlock {241,

ypEE " .
ThlisBlock [5258 & {2568 * ThieBleck[$2&]):

Appandlx A: ProDOS 146 File Organization 265

EntryPolnter
BlockEntries
RativeEntries

while ActiveEntries < FileC

Onee these values are known, an application can scan through the
entries in the buffer, using a pointer (Ent ryPointer) o the
beginning of the current entry, 4 counter I:EIch:kEntriE:El} that
indicates the number of entries that have been examined in the
current block, and a second counter (Aot iveEntries) that
indicates the number of active entries that have been processed.

An emtry is active and is processed only if its first byte, the _
storage_type and name_length, is nomzero All entries have
been processed when ActiveEnsries is equal to FileCount. 1 all the
enilries in the buffer have been processed, and ActiveEniries doesnt
equal FleCoun), then the next block of the directory is read into the
bulTer.

:= EntryLength + 534; [Sklp header
= $02% [Prepare to process antry L¥o)
1= §007 [Ho actlve entries foumd ye: |

ount do beglns

T a Actclwve entryl
Lt ThisBlock |EntryPolnter] <> 500 then begln I ¥
ProcessEntry (ThisBlock [EntcyPolnter]l:

ActiveEntries

o “ +a FESERE
1f ActiveEntries < FilleCount then [More antries to pPréd
if BlockEntries = EntrliesferBlock
chan baegln {ThisBlock done. Do next onel
Th ack 1= ReadS12Bytes (Reflum]
BleckEntries r= $01;
EntryFPolnter = 504
and
mlae begln (0o next entry 1n ThisBlock)
EnptrcyPolnter L En::yl-“u'_.-lte:r & E ylength;
Blo rles := BlockEntries + 501
end
end;

Close {Raf¥uam)

2t Appeandixes

;= RActlveEntrles + 501

This algorithm processes entries until all expected active entries
have been found. If the directory structure is damaged, and the end
of the directory file is reached before the proper number of active
entries has been found, the algorithm fails.

Ermai and orgunlzﬁlicn of standard files

Each active entry in a directory file points to the key block (the first
block) of anather file, which itself is either a subdirectory fle or a
standard file. As shown below, the key block of a standard file may
have several types of information in it The storage type field
in that file's entry must be wsed to determine the contents of the key
blaek. This saatian explains the organization of the three stages of
standard file: seedling, sapling, and tree. These are the fles in
which all programs and data are stored.

Every block in a standard file is either a data block or an index
black. Data blacks have no predefined format—they contain
whatever Information the file was ereated to hold, Index blocks, on
theother hand, have a very specific format—they consist of
nothing but 2-byte pointers, giving the (disk) adresses of other
blocks that make up the file, Furthermore, the low-order byte of
each pointer is in the first half of the block, whereas the high-order
byte of the pointer is in the second half of the block. An index black
can have up 10 256 pointers, so i a pointer's low-order byte is at
address # in the block, its high-order bye is at address m+256,

@ Note: Deleting a file or changing its logical size (EOF) can alter
the contents of its index blocks, See *DESTROY™ in Chapter 9
and *"SET_EOF" in Chapter 10

Erow[ng a tree file

The following scenario demonstrates the growth of a wee file on 4
volume. This scenario is based on the block allocation scheme used
by ProDOS 16 on a 280-block fexible disk that contains four blocks
of volume directory, and one block of volume hit map. Larger
capacity volumes might have more blocks in the volume bit map,
but the process would be identical,

A formatied, but otherwise empty, ProD0S 16 volume is used like
thuis:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused
Appendl A: ProDOS 16 Fle Crganization 247

268

Appandbons

If you open a new file of & nondirectory type, one data blodk Is
immediately allocated to that file. An entry is placed in the volume
directory, and it points to block 7, the new data block, as the key
bilock Tor the file. The key block is indicated belew by an amow.

The volume now [ooks Hke this:

Blocks 0-1 Loader

Blochks 2-5 Volume directary

Block 6 Volume bit map
—> Bk 7 Dxata block 0

Blocks 8-270 Unused

This is a seedling file: its key block contains up 10 512 bytes of
data. If vou write more than 512 bytes of data to the file, the fle
grows into a sapling file. As soon as a second block of data
becomes necessary, an index block is allocated, and it becomes the
file's key block: this index block can point 1o up 1o 256 data blocks
{it uses two-byte pointers). A second data block (for the data that
won'l fit in the first data block) is also allocated.

The volume now looks like this:

Blocks -1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Diata block O
—= Plock B Index block O

Block 9 Data block 1

Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data, If the
file becomes any bigger than this, the file grots again, this time
inlo a teee file, A master index block is allocated, and it becomes
the file's key block: the master index block can point to up to 128
index blocks, and each of these can paint to up 1o 256 data blocks
Index block 0 becomes the first index block pointed to by the master
index block. In addition, a new index blodk is allocated, and a new
data block 1o which It points,

Here's a new picture of the volume:

Blocks (-1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Data block 0

Block 8 Index block 0

Blocks 9-263 Dvata blocks 1-255
—>= Block 264 Master index block

Block 265 Index block 1

Block 266 Data block 256

Blocks 267-279 Unused

As data is written to this file, additional data blocks and index blocks
are allocated as needed, up (0 a maximum of 129 index blocks (one
a master index block), and 32,768 data blocks, for 3 maximum
capacity of 16,777,215 bytes of data In a file. If you did the
multiplication, you probably noticed that a byte was lost
samewhere. The last byte of the last block of the largest possible file
cannot be used because EOF cannot exceed 16,777,216, If you are
wondering how such a large file might fit on 2 small volume sach as a
flexible disk, refer to the description of sparse files in this appendix.

This scerario shows the growth of a single file on an otherwise
emply volume, The process is a bit more confusing when several
files are growing—or being deleted—simultaneously, However, the
biock allocation scheme is always the same: when a new block is

needed, ProDOS 16 always allocates the first unusad block in the
volume bit map.

Appendix A: ProDOS5 16 Flle Orgonization 269

Seedling files

A seedling fe is a standard fle that containg no more than 512 daa
bytes (30 <= EOF <= $200). This file is stored a5 one block on the
volume, and this data block is the file's key block.

The organization of such a seedling file appears in Figure A-f.

key_pointa—®= ¢

512 Entes b‘*u*]

Flgure A-&
Ferrmat and orgontzation of a seedling file

The file is called a seedling file because it is the smallest possible
Pro[¥05 16 standard file; if mere than 512 data bytes are writen (o
it, it grows into a sapling file, and thence into a tree file.

The stocrage_type fleld of a directory entry that points o a
seadling file has the value §1

sapling files

A sapling file 1s a standard file that contains more than 512 and no
more than 128K bytes ($200 < EOF <= $20000). A sapling file
comprises an index block and 1 10 256 data blocks. The index block
contains the block addresses of the data blocks. Figure A-7 shows
the organization.

wey_polnter —

h‘\\‘ Dofg
- Block
4]
U to 258 index .
Z-bvie poindan 1o " "
data blocks Black .
Defa
= Biock
OEOF<sa u:\‘ bata
Biock
SFF
Figure A-7

Formot ond organizaficn of a sapling file

The key block of a sapling file is its index block. ProDOS 16 retrieves
data blocks in the file by first retrieving their addresses in the index
block,

The storage_type field of a directory entry that points 1o 4
sapling file has the value 52

Tree files

A tree file contains more than 128K bytes, and less than 16Mb
($20000 = EOF = $1000000). A tree file consists of a master index
block, 1 to 128 index blocks, and 1 1o 32,768 data blocks. The
master index block contains the addresses of the index blocks, and
each index block contains the addresses of up 1o 255 data blocks.
The organization of a tree file is shown in Figure A-8.

270 Appendixes Appendix A: ProDOS5 14 Fle Organlzation n

Indax

Block
ey _poirti g ——_e o
Up o 138 SAostar =
S-byte poirans o 4 Index .
inclaa Dlocks Block -
l=1-1]
L Block
£

Figure A-8
Format aond organizaticon of a free flle

The key block of a tree file is the master index block, By looking at
the master index block, ProDOS 16 can find the addresses of all the
index blocks, by looking at those blocks, it can find the addresses of
all the data blocks,

The storage_type field of a direciory entry that points to a tree
file has the value $3

Using standard files

An application program operates the same on all three types of
standard fles, although the storage type in the file's entry can
be used to distinguish between the three. A program rarely reads
index blocks or allocates blocks on a volume: ProDOS 16 does
that, The program need only be concerned with the data stored in
the file, not with how they are stored,

All types of standard files are read as a sequence of bytes, numbered
fram 0O to (EOF-1), as explained in Chapter 2

Sparse files

A sparse file is a sapling or tree file in which the number of data
bytes that can be read from the file exceeds the number of bytes
physically stored in the data blocks allocated to the file. ProDOS 16
implements sparse files by allocating only those data blocks that
have had data written 1o them, as well as the index blocks needed to
point to them

For example, you can define a file whose EOF is 16K, that uses only
three blocks on the volume, and that has only four bytes of data
wrillen o it. Refer to figure A-9 during the following explanation

1. If you create a file with an EOF of $0, ProDOS 16 allocates only
the key block (a data block) for a seedling file, and fills it with mull
characters (ASCIT $00),

. IF you then set the EOF and Mark to position $0565, and write four
bytes, ProDO5 16 caloulates that position 30565 is bytle $0165
(3056450200 * 20 of the third block (block $2) of the file It
then allocates an index block, stores the address of the current
data block in position 0 of the index block, allocates another data
block, stores the address of that data block in position 2 of the
index block, and stores the data in bytes 30165 through $0168 of
that data block. The EOF is now $0569.

3 1If you now set the EOF to $4000 and close the file, vou have
a 16K sapling file that takes up three blocks of space on the
volume: two data blocks and an index block (shaded in Figure
A-G), You can read 16384 bytes of data from the file, but all
the: bytes before 0565 and afier 30568 are nulls,

[

Append A: ProDOS 14 Flle Orgonizofion 273

Duba Blocks

— / ~ 0 Rt &
kay_poinfer) Viaiue
1 — D
Fl \ Appiies fo,
Indan = M
Block =
-— ryie 545548
5400
51
S&FF
Blochs octualy
it b ik =
51
Yl S3FFF

Figure A-9 .
An exarmple of sparsa file organization

Thus PraDOS 16 allocates volume space only for those blocks in a
file that actually contain data. For tree files, the situation is

similar: i none of the 256 data blocks assigned to an index block in
a tree file have been allocated, the index block itself is not
allocated.

& Note: ‘The frst data block of a standard file, be it a seedling,
sapling, or tree file, is always allocated. Thus there s always 2
data block to be read in when the file is opened

Locating a byte in a file
This is how to find a specific byte within a standard file:

The File Mark is a three-byte value that indicates an absolute byis
pasition within a file. If the file is a tree file, then the high-order
seven bits of the Mark determine the number (0 10 127) of the index
block that points to the byte, That number is alse the location of the
low byte of the index block address within the master index block
The location of the high byte of the index block address is that
number plus 256

Byie 2 Byte 1 Byla 0
7la[sfalaf2l1To7]a]sTalaT2] 1 Tof 7Tl sTalaT2]1To
Index Block Mo. Data Block Mumber Byte of Block
L - i . 2 e ol -
Tree File only Tree and Sapling All Threa

Figure A-10
Filer Mark format

IF the file is a tree file or a sapling file, then the next eight bits of the
Mark determine the number (0-255) of the data block pointed to by
the indicated index block, That number is also the location of the
low byte of the data block address within the index block. The high
byte of the index block address is found at that value plus 256,

For tree, sapling, and seedling files, the value of the low nine bits of
the Mark is the location of the byte within the selected data block,

Header and entry fields

The storage type attribute

The value in the atorage_type field, the high-order four bits of
the: first byte of an entry, defines the type of header (if the entry is a

header) or the type of file described by the entry, Table A-1 lists the
currently defined storage type values.

Appendix A: ProDOS 16 File Organization

275

Toble A-1
Storoge type values

Storoge type

% indicates an inactive file entry

51 indicates a ssedling file entry (EOF <= 256 byes)

§2 indicates a sapling file entry (256 < EOF <~ 128K bytes)

53 indicates a tree file entry (128K < BOF < 16M bytes)

$4 indicates a Pascal operating system area on & partitioned disk
$D indicates a subdirectory file entry

$E indicates a subdirectory header

4F indicates a volume directory header

ProDO5 16 automatically changes a seedling file to a sapling file
and a sapling fle to a tree file when the file's EOF grows into the
range for a larger type. If a file's EOF shrinks into the range for a
smaller type, ProD0O5 16 changes a tree file 10 a sapling file and a
sapling file 10 a seedling file.

The creation and last-modification fields

The date and time of the creation and last modification of each
file and directony is stored as two four-byte values, as shown in
Figure A-11.

Byte 1 Byt D
ar: 15|-.4._1:1|12;'|1im|9;a|:[.:.|5 ajalz]1]o
Volue: Yeor | Manth Day
Byt 1 Byte O
s [1E[apaiz[o[e[a[7[6[5]a]a[2]1]0
vaive: [0(0]0 Howr olo Mirite

Figure A-11
Date and time format

S R R lanay, sy Tk .
hinary integers, and may be unpacked for conversion to normal
integer values.

by ¥ t

The access attribute

The access attribute field, or acoess byte (Figure A-12), determines
whather the file can be read from, written 1o, deleted, or renamed.
It also contains a bit that can be used wo indicate whether a backup
copy af the file has been made since the file's last modification.

=

B [7]a]5]afa]2
Vaive: | D |AN| B |reserved (W | R

where

D = destroy-enable bit
EN = rename-enable bit
B = backup-needed bit
W = wrile-=nable bit

R = read-enable bit

Flgure A-12
Access byte format

A bit s#1 to 1 indicates that the operation is enabled; a bit cleared 10
0 indicates that the operation is disabled. The reserved bits ane

always 0, The most typical setting for the access byte is $C3
(110000113

ProDOS 16 sets bit 5, the backup bit, 1o 1 whenever the file is
changed (that is, after a2 CREATE, RENAME, CLOSE after
WRITE, or 3ET_FILE INFO operation). This bit should be resat
1 O whenever the file is duplicated by a backup program,

4+ Note: Only ProDOS 16 may change bits 2-4; only backup
programs should clear bit 5 (using CLEAR_BACKUP_BIT).

Appendhe A ProDOS 16 Flle Organization 277

278

Appandlkes

The file type atiribute

The file_type field in a directory entry identifies the type of file
described by that entry. This field should be used by applications
1o guaraniee file compatibility from one application o the next
The currently defined hexadecimal values of this byte are listed in
Table A-2.

Table A-2 also lists the 3-character mnemonic file-type codes that
should appear on catalog listings. For any file type without a
specified mnemonic code, the catalog program should substitute
the hexadecimal file type number.

& Note SO file types are included in Table A-2 because 505 and
ProDO5 have identical file systems.

Toble A-2
ProDOs file types

Flie type Mnemonic Code Dascription

300 Uncategorized file (505 and ProDOS)
$01 BAD Bad block file

$02 ¢ PCD Pascal code file

303 1 PTX Pascal text file

$04 TXT ASCII text file (508 and ProDOS)
$05 1 PDA Pascal data file

06 BIN General binary file (505 and ProDOS 8)
507 FNT Font file

$08 FOT Graphics screen file

509 ¢ BA3 Business BASIC program file
$0A 1 DA3 Business BASIC data file

0B+ WPF Word Processor file

30C ¢ 5085 505 system file

S0D-$0F (505 reserved)

$OF DIR Directory file (505 and ProDOS)
510 1 RFD RPS data file

511 ¢ RF1 RPS index file

12 ¢ AppleFile discard file

$13 1 AppleFile model file

514 1 AppleFile report format file
$151¢ Screen Library file

$16-518 1 (505 reserved)

Table A-2 (continued)
PraDOS flle types

Fie ypa Mnemonic Code Description

519 ADB AppleWorks Data Base file

S1A AWP AppleWorks Word Proc, file

$1B ASP AppleWorks Spreadshest file
$1C-5AF (reserved)

580 SRC APW source file

iB1 ORBJ APW object file

in2 LIB APW library file

$B3 516 Prol¥25 16 application program file
504 RTL APW run-time library file

$B5 EXE Prol05 16 shell application file
5$B6 ProDOS 16 permanent initialization file
SBY Prol¥O5 16 temporary inftialization file
5Be New desk accessory

5B9 Classic desk acoessory

SDA Tool set file

SBB-$BE (reserved for ProDOS 16 load files)
$BF Peold05 16 document fle

$CO-$EE (reserved)

$EF PAS Pascal area on a partitioned disk
$F0 CMD PraDOS 8 CI added command file
§F1-5F8 ProDO5 8 user defined files 1-8

$F9 (ProDOS B reserved)

$FA INT Integer BASIC program file

$FR IVR Integer BASIC variable file

$FC BAS Applesoft program [ile

SFD VAR Applesoft variahles file

SFE REL Relocatable code file (EDASM)

SFF 5YS Prol}O5 8 system program file

Tapply to SOS (Apple D only

Some applications use an another field in a file's directory entry,
the auxiliary type field (aux_typa), to store additional
information not specified by the file type, Catalog listings may
display the contents of this feld under the heading "Subtype.”

Appandk A: ProDOS 14 Flle Crganization 279

e e T

280

For example, APW source files (f1le type $BO0) include a
language-type designation in the aux_type feld. The starting
address for ProDO5 8 executable binary files (file type 506)
may be in the aux_type field. The record size for random-access
text files (File type 5042 may be specified in the auxiliary ype
Field.

Pral¥05 16 and ProDOS 8 impose no restrictions (other than size)
on the contents or format of the auxiliary type field. Individual
applications may use those 2 bytes 1o store any useful information.

—d

Appendix B

Apple Il Operating Systems

This, appendix explains the relationships between ProDOS 16 and
three other operating systems developed for the Apple 11 Family of
computers (D05, Prol0S 8, and Apple [Pascal), as well as two
developed for the Apple 111 (505 and Apple [Pascal,

If you have written programs for one of the other systems or are
planning 1o write programs concurrently for ProDOS 16 and
another system, this appendix may help you see what changes will
be necessary 10 transfer your program from one system to another.
If you are converting files from one system to another, this
appendix may help you understand why some conversions may be
more successful than cthers,

Thi first section gives a beiefl history, The next two sections give
genenal comparisons of the other operating systems (@ ProDOS 16,
in terms of file compatibility and operational similarity.

History

DOs

05 stands for Disk Operating System. 1L is Apple's [irst operating
system, before DOS, the firmware Monltor program controlled
program execution and input/output

281

282

Appendxes

DS was developed for the Apple [I compater. It provided the first
capability for storage and retrieval of various types of files on disk
(the Disk 1Dy, the System Monitor had allowed input/output (of
binary data) to cassette tape only,

The latest version of DOS is DOS 3.3, It uses a 16-sector disk [ormat,
like PraDOS 8 and ProD05 16. Earier versions use a 13-sector
format that cannot be read by ProDOS 8 or ProDOS 16,

505

505 is the operating system developed or the Apple 11 computer
Its name is an acronym for Sophisticated Operating System,
reflecting its increased capabilites over DOS. On the other hand,
505 requires far more memaory space than either DOS or ProDOs 8
(below), which makes il impractical on computers with less than
256K of RAM.

ProDOS 8

Prol0O5 8 (for Professional Disk Operating Systend) was developed
for the newer members of the Apple 11 family of computers, It
requires at least 64K of RAM memory, and can run on the Apple T,
Apple Ilc, and 64K Apple 11 Plus,

ProDX5 B brings some of the advanced features of 505 (o the Apple
1T Family, without requiring as much memaory as 3085 does. Its
commands are essentially a subset of the 505 commancds.

The latest version of ProDOS 8 developed specifically for the Apple
Ile and IIc is ProDOS B (1.1.1), An even mone recent version,
developed for the Apple IG5 but compatible with the Ile and llc, s
ProDOS5 8 (1.2).

& Note: Prior to development of ProDOS 16, ProDOS 8 was
called simply Prof0S

ProDOS 16

ProDOS5 16 is an extensive revision of ProD0S 8, developed
specifically for the Apple 11G5 (it will not run on other Apple IT's).
The 16 refers o the 16-bit internal registecs in the Apple 11GS
A5CAT6 microprocessor,

Pro[¥25 16 permits access (o the entine 16 Mb addressable memory
space of the Apple 1IGS (ProDOS 8 is restricted 1o addressing 64K)
and i1 has more “S05-like” features than ProDOS 8 has, It also has
some new features, not present in 505, that ease program
development

There are two versions of ProDOS 16, Version 1.0 is a first-release
system, consisting of a Prol>05 B core surrounded by a "ProDd05
16-like™ user interface. Version 2.0 is the complete implementation
of the PralX05 16 design

Pascal

The Pascal operating system for the Apple [T is modified and
extended from UCSD Pascal, developed at the University of
California at San Diego. The latest version, written for the Apple
lle/11e and 64K Apple 11 Plus, is Pascal 1.3, It also runs on an Apple
[IGs,

Pascal for the Apple 111 is 3 modified version of Apple 11 Pascal, It
uses $05 for most of its operating system functions

File compatibility

Pral05 16, ProDOS 8, and 505 all use 2 hierarchical file system
with the same formal and organization, Every file on one sysiem's
disk can be read by either of the other systems. OS5 and Pascal use
significantly different formats

The other systems compare (0 FroDOS 16 as follows:

ProDOS 8: ProDOS 16 and ProDOS 8 have identical fil= system
organizations—therefore, ProDOS 16 can read all ProDOS5 8 files.
However, the System Loader under ProDOS 16 will not execuse
Prol0s 8 executable binary files {ype $06), Likewise, ProDOS B
can read but will not execule file types $B3-3BE; those file types are
specific 1o ProDOS 16,

Appendx B! Appla Il Operating Systems 283

Takle B-1

$05: PraDOS 16 and 05 have identical file system organizations
—therefore, ProDd05 16 can read (but not execute) all 505 files,

DOS: DOS does not have a hierarchical file system. ProDOS 16
cannot directly read DOS files (but see *Reading DOS 3.3 and
Apple T Pascal Diisks,” in the following section),

Pascal: Apple I Pascal does not have a hierarchical file sysiem.
Prol0% 16 cannot directly read Apple 11 Pascal files (but see
“Reading D05 3.3 and Apple 1 Pascal Disks," below).

Apple 11 Pascal uses the 505 file system. Therefore ProDOS 16 can
read (but not execute) all Apple 111 Pascal files.

Reading DOS 3.3 and Apple Il Pascal disks

Bath OS5 3.3 and ProDOS B 140K Nexible disks are formatied using
the same 16-sector layout. As a consequence, the ProDOS 16
READ BLOCK and WRITE BLOCK calls are able o access DOS
3.3 disks too. These calls know nothing about the organization of
files on either type of disk.

When using READ BLOCK and WRITE BLOCK, you specify a 512-
byte block on the disk. When using RWTS (the DOS 3.3 counterpart
to READ BLOCK and WRITE_BLOCK), you specify the track and
sector of a 256-wie chunk of data, as explained in the DOS
Programmer's Manual To use READ BLOCK and

WEITE BLOCK (0 access DOS 3.3 disks, you must know what 512-
byte block coresponds to the track and seclor you want

Table B-1 shows how (o determine a hlock number from a given
track and sector, First multiply the track number by 8, then add the
sector offset that corresponds to the sector number. The half of the
block in which the sector resides is determined by the half-ol-block
line (1 is the first half; 2 is the second).

Trocks and sactors fo blocks (140K disks)

Block number = (8"frock numbaer) + sechar offiel

Operating system similarity

‘This section compares the functlonal similarities among the
operating systems. Functional similarity betwesn two systems
implies that they perform closely related operations, but it does not
mean that thay have identical procedures or commands.

Input/Qutput

ProD05 16 can perform 'O operations on files in disk drives (block
devices) only. Under ProDOS 16, therefore, the current
application is responsible for knowing the protocol necessary o
communicate with character devices (such as the console, printers,
and communication ports),

The other systems compare to ProDO5 16 as follows:

ProDO5 8: Like Prold05 16, ProDOS 8 performs 1/0 on block
devices only.

505: 505 communicates with all devices, both character devices
and block devices, by making appropriate file access calls (such as
open, read write, close). Under 508, writing to one device is
essentially the same as writing to another.

DOS: DOS allows communication with one type of device
only—the Disk 11 drive, DOS 3.3 uses a 16-sector disk formar; earlier
versions of DOS use a 13-sector format. 13-sector Disk 1T disks
caﬁn.n-nt be read directly by DOS 3.3, 505, ProDOS B, or ProDd5

1

Pascal: Apple Il and Apple 111 Pascal provide access to both block
devices and character devices, through File 'O, Biock IO, and
Derice 1O calls 1o the volumes on the devices.

Sector: a 1 2 3 4 5 6 7 B 9 A B C D E F
Sector offser: 0 7 6 5 5 4 4 3 3 2 2 1 1 o 7
Half of block: 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Refer to the DOS Programmer's Manual for a description of the fike
organization of DOS 3.3 disks.

Appendix B: Apple || Operafing Systems 285

| 284 Appeandixes

284

Appendixes

Filing calls

508, ProDOS 8, and ProDOS 16 filing calls are all closely related
Most of the calls are shared by all three systems; furthermare, their
numbers are identical in ProDOS B and 505 (ProDOS 16 calls have
a completely different numbering system from either ProDOS 8 o
805,

The other systems compare to FroDOS 16 as follows:

ProDOS 8: The ProDO5 8 0¥ _LINE call corresponds o the
ProDOS 16 VOLUME call, When given a device name, VOLUME
remurns the valume name for that device. When given a unit numbes
(derived from the slot and drive numbers), O _LINE retuns the
volume name,

The ProDOS & RENAME call corresponds to the ProDOS 16
CHANGE_PATH call, except that RENAME can change only the Lt
name in 3 pathname.

$05: The 505 GET_FILE INFO call returns the size of the file
(the value of BOF), With ProDOS 16 you must ficst open the file and
then use the GET_EOF call

The $O5 VOLUME call corresponds to the ProDO5 16 VOLUME
call. When given a device name, VOLUME refurns the volume
name for that device.

The 05 calls SET_MARK and SET_EOF can use a displacement
from the current position in the file. ProDOS 16 accepts only
ahsolute positions in the file for these calls.

DOS: DOS calls distinguish berween sequential-access and
random-access text files. PraDOS 16 makes no such distinction,
although the ProDOS 16 BEAD call in NEWLINE mode functions s
a spquential-acoess read.

DOS uses APPEND and POSITION commands, roughly similas
1o ProDO5 16's SET_MARK, 1o set the current position in the file
and to automatically extend the size of the file.

The CLOSE command in DOS can be given in immediate (from
the keyboard) or deferred (in 2 program) mode. No ProDOS 16
commands can be given in immediate mode

Paseal: Apple I Pascal distinguishes among fext files, data files,
and code files, each with different header formats; all ProDOS 16
files have identical header formats. The Pascal procedures
FEWRITE and RESET comespond to ProDOS 16's CREATE and
OPEN calls. Pascal has more procedures for reading from and
wriling to files and devices than does ProDd05 16.

Because Apple 111 Pascal uses the 505 file sysem, its filing calls
correspond directly to $085 calls,

Memory management

Under ProDOS 16, neither the operating system nor the application
program perform memory management; allocation of memory is
the responsibility of the Memory Manager, an Apple [1G5 ROM-
based 1ool set. When an application needs space for its own use, it
makes a direct request (o the Memory Manager, When it makes a
ProDOS 16 call that requires the allocation of memory space,
ProDOS 16 makes the appropriate request to the Memaory Manager.
The Apple 1IGS Memory Manager is similar to the 505 memory
manager, excepl that it is more sophisticated and is not considered
part of the operating system,

The other systems compare to ProDOS 16 as follows:

ProDOS 8: A ProDOS5 B application is responsible for its own
memory management. It must fnd free memory, and then allocate
it by marking it off in the Pro[X05 8 global page’s memory bit map
Pro[¥05 B protects allocated areas by refusing to write to any pages
that are marked on the bit map, Thus it prevents the user from
destroying protected memory areas (as long as all allocated
memory is properly marked off, and all dara is brought into
memory using ProDOS 8 calls).

508: 508 has a fairly sophisticated Memory Manager that is part of
the operating system {isell. An application requests memory from
505, either by location or by the amount needed. IF the request can
be satisfied, S0S grants it That portion of memory is then the sole
responsibility of the requestor until it is released,

DOS: DOS performs ne memory management, Each application
under NS is completely responsible for its own memory
allocation and use.

Appendix B: Apple | Operating Systemns 287

e

288

Appeandldes

Poscal: Apple 11 Pascal uses a simple memory management sysiem
that controls the loading and unloading of code and da segments
and tracks the size of the stack and heap,

Apple 11 Pascal uses 506 for memory management.

Interrupts

PraD{% 16 does not have any built-in interrupt-generating device
drivers, Internupt handling routines are therefore installed into
ProDOS 16 separately, using the ALLOC_INTERRUPT call. When
an Interrupt ooours, ProDOS 16 polls the handling routines in
succession until one of them claims the interrupt

The other systems compare to ProDOS 16 as follows:

ProDOS 8: ProDdO5 8 handles interrupts identically 1o ProDOS 16,
except that it allows lewer installed handlers (4 vs, 16).

$0%: In SO5, any device capable of generating an inlerropl must
have a device driver capable of handling the interrupt; the device
driver and its interrupt handler are inseparable and are considered
to be part of S05. In addition, SO8 assigns a distinct interrupt
priorty to each device in the system.

DOS: DOS does nol support interrupls.

Poscal: Apple 11 Pascal versions 1.2 and 1.3 support internspis;
earlier versions of Apple 11 Pascal do not

Apple 11 Pascal uses the 505 intermupt system.

Appendix C

The ProDOS 16 Exerciser

Ihe Frof}s 16 Exerciser is a program that lets you practice making
operating system calls without writing an application. All PralOs
16 functions execute just as they would when called from a program;
therefore you can test how the calls work and, if NEeCessary, corect
any programming errors before coding your routines,

Starting the Exerciser
Firsl, make a copy of the Exerciser disk and put the original away in a

safe place. Consult your owner's manual if you need instructions on
howr to copy a disk.

The Exerciser may be the starup program on the diskeus provided
with this manual. If so, it should execute automatically when you
turn on the machine and insert the diskette. Otherwise, selec it
from the desktop or program launcher that comes up when you star
up the system. The program's filename [EXERCISER.

The first display is the menu screen. It shows all ProDOS 16 calls by
number and name, as well as a few other commands you may enter
The menu screen always returns between execution of calls or
commands

289

Making system calls

You make system calls from the exerciser by entering their call
numbers. The number you enter is displayed at the bottom of the
menu screen. You may clear the number at any time by pressing
pero twioe in sucoession.

Aler emtering the number, press the Return key. The parametes
block for the call you selected is displayed. Enter a value Cor select
the default provided by pressing the Retum key) for each
parameter; each time you press Return, the cursor moves downward
one position in the parameter block. The cursor does not stop at
any parameter that is a result ondy (that has no input value),

& Note: I, while you are eniering paramefers, you wish o
correct a value, press the Escape key—it positions the cursor
back at the wp of the parameter block., At any other time,
however, the Escape key returns you to the main menu.

Pathnames and other text strings are passed 1o and from ProDOS 15
in buffers referenced by pointers in the parameter blocles,
Therefore, to enter or read 2 pathname you must provide a buffer
for ProDOS 16 to read from or write (o, In most cases, the Exerciser
sets up a default buffer, pointed o by a defaull poiner parameies
(see, for example, the CREATE call). The contents of the location
referenced by that pointer are displayed on the screen, below the
parameter block. For convenience, you can directly edit the
displayed string on the screen; you neednt access the memory
locaton ltself,

After you have entered all the required parameters, press the Reum
key once more 10 execule the call, I everything has gone right, the
parameter list now contains results refumed by Prol}05 16, and the
message "500 call successful® appears at the bottom of the screen,
If a ProDOS 16 error ocowers, the proper error number and message
are displayed instead. In addition, if an error ocourrs a small *c”
should appear at the lower right comer of the screen, o indicate
that the microprocessor's carry bit has been set.

Thie Exerclser does not protect you from safous mistakas. With
0 WRITE_BLOCE call you con easly overwrite a crifical block on
one of your disks, daestroving valuable e dota or even the
disk’s directory. With o careless roruar call, you can dasiray
all information on your disk. Be careful how you wse this
programi

a{er commands

In addition to practicing system calls, you may issue commands
that allow you Lo list the contents of a directory, modify any part of
the Apple IG5 RAM memory, enter the Monitor program, or quit
the Exerciser.

List Directory (L)
Press L and you are prompted for the pathname of the volume or
subdirectory whose contents you wish 1o list. For each file in the
directory, the listing shows file name, file type (see tahle A-2),
nummber of blocks used, date and time of last modification, date and
time of creation, BOF (logical size in bytes), and subtype (value of

the auxiliary type Reld). Press the Escape key to return to the main
menu.

Modify Memory (M)

You use the Modify Memory command to place data in memory for
PreDOS 16 to read, or o inspect the contents of a buffer that
ProDO8 16 has written 1o,

Press M and you are prompied for a pointer to the part of memory
you wish 1o aecess. Enter the proper address and press the Retumn

key. A 256-byle (one-page) portion of memory is displayed, as 16
rows of 16 byies each, beginning on 2 page boundary. Each row is

preceded by the address of the first byte in that row, to the right of
r.'}m'h row are the ASCIT representations of the values of the bytes in
Lhe row,

Lise the arrow keys to move the cursor around on the screen. To
change the value of a byte, type the new value right aver the old
one, You can enter data in hexadecimal format anly; the results of
your entry are displayed on the screen in both hexadecimal and
ASCIL For reference, Table C-1 lists ASCI characters angd their
decimal, hexadecimal, and binary equivalents.

You may undo up to the last 16 changes you mads by yping [
successively, To display the preceding or succeeding page in
MEmMOry, Press < of >

Appandlx C: The ProDOs 14 Exerciser Fadl

Table C-1 Table C-1 {confinued)
ASCH character saf

ASCI charocter set

| Char Dec Hoex Binary Char Dec Hex Binary

C_m:r_r Dec Hox Blnary Char Dac Hax Binary
il i 0 DOCO0000 (40 28 00101000 8] 75 4F 01001111
| sioh 1 1 00000001) a = %:gﬁé] 8 50 01010000 ; 13;‘ gg 01101001
=3 gme £ & o P8 3 o @ ouoww
: i . ; 32 2 1 107 B
eol F i 0000100 . 44 2 00101100 5 83 53 01010011 | 108 gc g} ig:%&
eng 5 5 0000101 : 45 an 00101101 T B4 54 01010100 m 1 60
- B . A ;& p omme @m0 @ oo
y , i 11011 o 111 &GF
ht 9 g 00001001 0 48 30 00110000 w a7 57 01010111 P 112 70 gi!?éééé
If 10 A 00001010 1 49 31 00110001 X 88 58 01011000 q 13 7 01110001
vl 11 B 0O001011 2 .‘sﬂ ;g gﬁgﬂﬁ Y a9 58 01011001] 114 72 01110010
{—rr ai g &J{ﬁnm ;:. 512 3% 00110100 Iz 3\:11 gg 01011010 5 115 73 01110011
; - (1011011 1
so 14 E 00001110 5 53 35 00110101 § 92 5C 0011100 u Hg ;; 3:11313?
¥ i3 8 it 6 4 36 00110110 I o3 sD 01011101 v 118 76 01110110
dle 16 10 00010000 v gg _3,; %H'ﬂg A o4 SE 01011110 w 1s 77 01110111
333 18 12 333%5 9 57 39 00111001 - g glﬂ' 01011111 x 120 7 01111000
I dc3 19 13 00010011 : 58 3A 00111010 97 &1 gHimm 4 i%; ?.r.li gHHg?Elﬂl
ded 20 14 004010100 : g iE %H]l?é-; b o8 62 01100010 [122 7B 01111011
nak 21 15 00010101 < - c 99 &3 01100011 I
o B oo > & 3 ooni d 0 66 01100100 1 i3 1 o
c b ! e 101 5 011001 -
can 24 18 (0011000 ? 63 3F 00111111 f w0z 68 mm:?& del i%g 35 giiilii?
em 25 19 00011001 @ fid 40 01000000 & 03 67 01100111
| sub 26 1A 00011010 A g-g :‘:i g}%‘;
27 18 00011011 B
F:‘ 28 1c 0011100 C a7 43 01000011 Warming Modity Memory does not prevent you from changing volues in
| g5 o 1D 00011101 D] 44 01000100 Dﬁﬂl:;rmmw that are aleady in use. You can concebably
] alter Exerciser [tself of other critical code, causing o system
s 30 1E 000111140 E 69 45 01000101 ctash. Be careful what mod
us 3] 1F 00011111 F 70 4i 01000110 i o
sp 32 20 00100000 G 71 47 01000111
1 33 21 00100001 H 72 48 01001000
' 34 22 00100010 I 73 49 01001001 o
= a5 23 00100011 1 74 44 01001010 Exit to Monitor ()
LooF o4 mae x5 o8 Go T Mok . T o o e s
E— 3; = 0106110 X0 T.-' D 01001101 Reference) that allows you 1o inspect and modify the contents of
: e 37 BO100111 N 28 4E 01001110 memory, assemble and disagssemble code in a limited manner, and
execule code in memory. You may enter the Monitor from the
ProD0O5 16 Exerciser,
202 Appendlxes Appendx C: The ProDOS 16 Exerclser %3

To call the Monitor, press M, When the Moniter prompt (% :
appears, you may issue any Monilor command. To leave the Append|x D
Monitor and: return to the Exerciser, you must reboot the computer _
{press Controd=C=Reset) and, if necessary, re-execute the Exerciser
from the desktop or program launcher.

System Loader Technical Data
Quit ()

To quit the ProDOS 16 exerciser, simply press Q. OF course, you
may also quit by selecting the ProDOS 16 QUIT call ($27), filling
out the parameter block, and executing the call.

This appendix assembles some specific technical details on the
System Loader. For more information, see the referenced
publications

Object module format o

The Sysiem Loader can load only code and data segments that
conform to Apple 11G5 object module format. Object module
| formart is described in detail in Apple fGs Programmer's

| Workshop Reference.

;[Ia types

File types for load files and other OMF-related files are listed below
For a complete list of ProD05 file types, see Table A-2 in
Appendix A

294 Appeandixes

Flle fype Description

B0 Source fite (awx_fype defines language)

$B1 Ohbjeat file

$B2 Library file

$B3 Application file

§B4 Run-time library file

585 Shell application file

$86 - JBE Reserved for system use. Crrrently defined types
fncivde:

$B6 Permanent inilitialization file

$BY Temporary injtialization file

B8 New desk accessory

$B9 Classic desk accessory

Segment kinds

Whereas files are dassified by type, segments are classified by _
kind, Each segment has a kind designation in the KIND field EIFIJI:‘I
header. The five high-order bits in the KIND field describe specific
attributes of the segment; the value in the low-order five-bit field
describes the overall type of segment Different combinations of
attributes and type values yield dilferent results for the segment
kind.

The KIND field is two bytes long. Figure D-1 shows its formal.

Byta 1 Byte D
a [s[alaznaielel7]a[s[4]3]2]1]0]
vaive: [S0]Pr] P [5M #Biﬂ] (raserved) | Type

Figure D-1
sagment kind format

where the artribute bits (11-15) mean the following:

SD (bit 15) = static/dynamic {0 = static; :

1 = dynamic)
Pr (bit 14) = private (0= no; 1= yes)
PI(hit 13) = pnsjllnn-indepcnd:nl. 0 = no; 1 = yes)

SM (bit 12) = may be in special memory (0 =yes; 1 = na}

AB (bit 113 = absolute-bank (0= no; 1 = yes)
Ribit 1) = Reload 0 =no, 1= yes)

and the fype fleld (bits (-4 describes one of the following
classifications of the segment:

Value of Type Description

500 code segment

501 dafz segment

502 Jump Table segment

504 Pathname scgment

508 library dictionary segment
310 initializalion segment

512 direct-page/stack segment

Segment altributes can be combined with particular types to yield
different resultant values for KIND. For example, a dynamic
Initialization Segment has EIND = $B010,

& Note: A Reload segment is always loaded from the file when a
program starts up, even if the program is restarted from
memory, 11 is used to initialize data for programs that would not
otherwise be restanable,

Record codes

Load segments, like all OMF segments, are made up of records.
Each type of record has a code number and a name. For a complete
list of record types, see Apple TGS Programmer’s Workshop

Referenice The only record types recognized by the System Loader
are these:

Record Name Descrption

Code

SE2 RELOC intrasegment relocation record (in
relocation dictionary)

SE3 INTERSEG intersegment relocation record (in
relocation dicticnary)

5F1 Ds zero-fill record

$F2 LOONAT long-constant record (the actual code

and data for each segment)

5Fs5 cRELOC compressed intrasegment relocation
record {in relocation dictionary)

Appendix D: Systermn Loader Technlcal Data 97

208

Appendlides

Becard Horme Dascriplion

Code

LF6 cINTERSEG compressed intersegment relocation
record (in relocation dictionary)

SE7 SUPER super-compressed relocation record
(the equivalent of many cRELOC ar
cINTERSEG records)

£00 END the end of the segment

If the loader encounters any other type of record in a load segment
it retums error $110A

Load-file numbers

Load files processed by the Apple 1G5 Programmer's Workshop
Linker at any one time are numbered consecutively from 1. Load file
1 is called the initial load file. All other files are considered 10 be
run-time libraries

A load-file number of 0 in a Jump Table segment or 2 Pathiname
segment indicates the end of the segment

i.oud-mgmeni numbers

In each load fle created by the linker, segments are numbered
consecutively by their position in the load file, starting at 1, The
loader determines a segment’s number by counting its position
from the beginning of the lgad file. As a check, the loader also ooks
at the segment number in the segment's header

The first static segment in 4 load file, which need not be segment
number 1, is called the main segment—it is loaded first {except foe
any preceding initialization segments) and never leaves memary
while the program |s executing, Because a run-time library need
have no static segments at all, it typically has no main segment.

Segment headers
The first part of every object module format segment is a segmens

header; it contains 17 fields that give the name, size, and other
important information about the segment

Restrictions on segment header values

Because OMF suppors capabilities that are more general than the
System Loader's needs, the System Loader permits load files to have
orly a subset of all possible OMF characteristics. The loader does
this by restricting the values of several segment header fields:

KUMSEX: st be O
NUMLEN : must be 4
BANKSIZE: must be less than or equal to $10 000
ALIGN: must be less than or equal to $10 000

If the System Loader finds any other values in any of the above
fields, it returns error $110B (“Segment is Foreign™. The
restrictions on BANKSTZE and ALTGN are enforced by the APW
Linker also,

Page-aligned and bank-aligned segments

In OMF, the values of BANKSI12E and ALIGN may be any multiple
of 2. But because the Memory Manager and System Loader SUppOT
only lwo types of alignment (page- and bank-alignment) and one
bank size (64K}, the System Loader uses both BANESTZE and ALTGH
values 1o control segment alignment, as follows

1. If BAMKSIZE is 0 ar $10 000, its value has no effect on segment
alignment

&, If BANKSTZE is any other value, the greater of BANKSTZE and
ALIGH is called the alipnment facior. Alignment in memory is
controlled by the alignment factor in this way;

a. If the alignment factor &5 0, the segment is nat aligned 1o any
memory boundary,

b. If the alignment factor is greater than 0 and Jess than or equal
1o 5100, the segment is page-aligned

c. If the alignment factor is greater than $100, the segment is
bank-aligned,

Appendix [: System Looder Technical Data sl

300

Appandbias

& Note: The Memory Manager iself does not directly support
bank-alignment. ‘The System Loader forces bank alignment
where needed by requesting blocks in successive banks until it
fincls one that starts on a bank boundary,

There is only one entry point needed for all System Loader calls
(actually, all tool calls). It is to the Apple 11GS (ool dispatcher, at the
botom of bank $E1 (address $E1 0000). Although the System
Loader maintains memory space and a table of loader functions in
other parts of memory, locations in those areas are not suppored
Please make all System Loader calls with a J5L to $E1 0000, as
explained in Chapter 17 (or with macro calls or other higher-kevel
interface, il appropriate for your language).

The following variables are of global significance. They are defined
at the system level, so any application that needs 1o know their
values may access them. However, only USERID is imponant 1o
most applications, and it should be accessed only through proper
calls to the System Loader. The other variables are needed by
controlling programs only, and should not be used by
applicatons,

5EGTBL Absolute address of the Memory Segment Table
JMPFTBL Absolute address of the Jump Table Directory
BATHTBL Absolute address of the Pathname Table
USERID User 1D of the current application

User ID format

The User 1D Manager is discussed in Chapter 5, and fully explained
in Apple lfGs Toolbox Reference. Only the format of the User 1D
number, needed as a parameter for System Loader calls, is showmn
here.

There is a 2-byle User ID associated with every allocated memory
block. It is divided into three fields: MalnID, AuxID, and
TypelD. The HainID field contains the unique number assigned 1o
the owner of the block by the User D Manager; every allocated
bock has a noneero value in its MainiD field, The AuxID feld holds
a user-assignable identification; it is ignored by the System Loader,
ProDO5 16, and the User D Manager, The TypeID field gives the
general dass of softevare to which the block belongs.

Byte | Byte D
ae [1shahalielnpnjefe]7]als]4]a[2]1]0
Value Type ID Aux 1D WMain 1D

Figure D-2
User ID fomat

MainID can have any value from 501 o $FF (0 is reserved).
BuxID can have any value from 300 1o $0E.!
TypelD values are defined as follows:

500 Memory Manager

501 application

502 controlling program
503 ProDOS 8 and ProDOS 16
504 ool ser’

505 desk accessory

506 run-tme lbrary

307 System Loader

308 flrmware/system function
$09 Tool Locator

$0A-F (undefined)

HP type 1D = $04, these values of AuxiD are ressrved:

301 Miscellaneous Toolset file
$02 Scrap Manager file
50A ool setup file

Appendix D: Systern Loader Technical Data 301

g2

Appandines

Error Codes

This appendix lists and describes all error codes returned by
ProlIOS 16 and the System Loader. Bach emor code s followed by
the error's suggested name or screen message, and a brief
description of s significance.

When an error occurs during a call, Prol05 16 or the System
Loader places the error number in the accumulator (A-register),
sets the status register carry bit, and retumns control to the calling
routine,

If after a call, the carry bit is clear and the acoumulator contains 0,
that signifies a successful completion (no ermor).

ProD__DS 16 &rrEs

Hunl‘u’!‘uﬁrrm

A nonfatal error signifies that 4 requested call could not be
\--'-JJ:JP’L'!F:U *Ill,]!ll..llr. | WITLS [RILET CE LI L N e AL R

e — e e

Humbar

500
501

507

528

52R

5ID

S2ZE

Meszoge ond Dascripfion
General Errors:
(nio erroe)

Invalid call number: A nonexistent command has
been issued

ProDOS is busy: The call cannot be made because
PraDOS 16 is busy with another call

Detdce call errors:

Device not found: There is no device on line with the
given name (GET_DEWV_NUM call).

Invalid device request: The given device name o
reference number is not in ProlDOS 16's list of active
devices (VOLUME, READ BLOCH and WRITE BLOCK
calls)

Interrupt vector tahle full: The maximum number of
user-defined interrupt handlers (16) has already been
installed; there is no room for another

(ALLOC THTERRUPT cally

/O error: A hardware failure has provented propar
data transfer to or from a disk device. This is a general
code covering many possible error conditions,

No device connected: There is no device in the slot
and drive specified by the given device number
(READ BLOCK, WRITE BLOCK, and VOLUME calls)

Write-protected: The specified volume is write-
protected (the “wrile-protect” tab or notch on the
diskjacket has been enabled), No operation that
reduires wriling 1o the disk can be performed.

Invalid block address: An attemnpt was made (o read
data from a RAM disk, at an address beyond its limits.
Disk switched: The requested operation cannol be
performed because a disk containing an open [file has
been removed from its drive.

Appendx E: Emor Codes 303

D4

Appendises

Warning

Apple Il drives have no hardware method for detecting disk
switchas, This eror Is therefore refumed only when ProDOS 18
checks a valume rame during the nomal course of a call. Since
most disk occess calls do not Involve a check of the valume
name, a disk-switched emor con easly go undetectad.

$2F

$30 - S3F

$40

542

543

Sad

545

546

547

Device not on line: A device specified in a call is not
connected to the system, or has no volume mounted
on iL This error may be returned by device drivers that
can sense whether or not a specific device is on ling

Device-specific errors: (error codes in this range ane
o be defined and used by individual device drivers.)

File call errors

Invalld pathname or device name syntax: The
specified pathname or device name contains lllegal
characters (other than A-Z, 0-9, . /")

FCH table full: The 1able of file control Blocks s full;
the maximum permitted number of open files (8) has
already been reached, You may not open another [ile
(oPEN call).

Invalid file reference number: The specified file
reference number does not match that of any currently
apen file

Path not found: A subdirectory name in the specified
pathname does not exist (the pathname's synlax is
otherwise valid),

Yolume not found: The volume name in the specified
pathname does not exist (the pathname’s syntax is
otherwise valid).

File not found: The last file name in the specified
pathname does not exist (the pathname's syntax is
otherwise valid)

Duplicate pathname: An attempt has been made ©
create of rename a file, using an already existing
pathname (CREATE, CHANGE PATH calls),

548

549

544

Yolume full An anempt (o allocate blocks on a disk
device has failed, due to lack of space on the volume in
the device (CREATE, WRITE calls). If this ermor occurs
during a write, ProDOS 16 writes data is until the disk is
full, and still permits you 1o close the file,

Yolume directory full: No more space for entries is
left on the volume directory (CREATE call), In ProDOS
16, 2 volume directory can hold no more than 51
entries. No more files can be added to this directory
until others are destroyed (deleted).

Version error (incompatible file format) The
version number in the specified file's directory entry
does not match the present ProDOS 8-ProDOS 16 file
formal version number. This error can only occur in
future versions of Prolx05 16, since for all present
versions of ProlOS B and ProDO5 16 the file format
version number is zero,

@ Notee The version number referred to by this error code
concerns the file format only, not the version number of the
Operaling system as a whole, In particular, it is unrelated to the
ProDOS 16 version number returned by the GET_VERSION

call

548

§4.C

$4D

$4E

Unsupported (or Incorrect) storage type: The
organization of the specified file is unknown 1o ProDOs
16, See Appendix A for a list of valid storage types.

This error may alse be returned if a2 directory has been
tampered with, or if a prefix has been 261 10 2
nondirectory file,

End-of-file encountered {out of data): A read has
been attempied, but the current file position (Mark) is
equal to end-of-file (BOF), and no further data can be
read.

Position out of range: The specified file position
parameter (Mark) is greater than the size of the file
(EOQF).

Access not allowed: One of the attributes in the
specified file's access byte forbids the attempled
operation (renaming, destroying, reading, or writing)

Appandlx E: Emor Codes 305

§50

551

§52

§53

$54

$55

457

458

559

554

306 Appendxes

-

Elle Is open: An atempt has been made to perform a
disallowed operation on an open file (OPEN,
CHANGE_PATH, DESTROY calls).

Directory structure damaged: The number of
entries indicated in the directory header does nat
match the number of entries the directory actually
contains

Unsupporied volume type: The specified volume Is
not a ProDOS 16, ProDOS B, or 508 disk. Its directory
format is incompatible with ProDOS 16,

Parameter oul of range: The value of one or mors
parameters in the parameter block Is out of ils range of
permissible values.

Out of Memory: A ProDOS 8 program specified by
the QUIT call is oo large to fit into the memory space
available for ProDOS 8 applications.

VB table full: The table of volume control blocks is
full; the maximum permitted number of online
volumes,/devices (8) has already been reached. You
may not add another device 10 the system. The errar
pccurs when 8 devices are on line and a VOLUME call
is made for another device that has no open files.

Duplicate volume: Two or more online volumes have
identical volume directory names, This message is 4
warning: it does not prevent access 1o either volume
However, ProlXO5 16 has no way of knowing which
volume i8 Intended if the volume name is specified in 4
call; it will access the first one it finds.

Mot a block devices An altempt has been made 1o
access a device that is not a block device, Current
versions of ProDOS 16 suppon acoess (o block devices
only

Invalid level: The value specified for the system file
level is out of range (SET_LEVEL call)

Block number out of range: The volume bit map
indicates that the volume contains blocks beyond the
block count for the volume, This error may indicate a
damaged disk stroctune

558

S50

55D

55F

560

Illegal pathname change: The pathnames on a
CHANGE_PATH call spedify two different volumes.
CHANGE_PATH can move files among directories only
on the same volume

Not an executable file: The file specified in a QUIT
call is not a launchable type. All applications launched
by the QUIT call must be type $83 (PraDOS 16
application), 385 (shell application), or §FF (PraDOs
B system file).

Operating system/flle system not available: (1)
The QUIT call has specified a ProDOS 8 application o
be launched, but the ProDOS 8 operating system is not
on the system disk. (2) The FORMAT call Is unable 1o
format a disk for the specified file system.

Cannot deallocate /RAM: In quitting from a PraDOs
8-based program and launching a ProDOS 16-based

program, PQUIT is not able to remove the ProDOS 8

RAM disk in bank 301 (QUIT call).

Return stack overflow: An allempl was made to add
another User 1D to the return stack maintained by
PQULT, but the stack already has 16 entries, its
maximum permitted number (QUIT call)

Data unavailable: The system has invalid information
on which device was last accessed (GET_LAST DEV
call).

Fatal errors

A fatal error signifies the occurrence of a malfunction so serous thal
processing must halt, To resume execution following a fatal emror,
yvou must reboot the system.

Appendix E: Emor Codes 3a7

Humibar

Message ond Descripton

501

S0A

S0B

S0C

$0D

§11

308 Appandxes

Can*t

Unclaimed interrupt: An interrupt signal has
occurred and none of the installed handlers
claimsresponsibility for it This error may oocur if
interrupt-producing hardware is installed before is
associated interrupt handler is allocated.

VB unusable: The volume control block table has
been damaged. The values of certain check bytes are
not what they should be, so ProDOS 16 cannat use the
VCB table.

FCB unusable: The file control block table has been
damaged. The values of cerain check bytes are nol
what they should be, so ProDd05 16 cannod use the FCB
table.

Block zero allocated illegally: Writc-access to block
zero on a disk volume has been attempted. Block 2em
an all volumes is reserved for boot code.

Interrupt occurred while 1/'0 shadowing off: The
Apple 1165 has saft switches that control shadowing
from banks $E0 and $E1 1o banks $00 and 501 If an
inlernapt oocurrs while those switches are off, the
firmware interrupt-handling code will not be enabled
See Apple [GS Firmware Reference.

Wrong 05 version: The version number of the fle
P16 or PB s different from the version number of he
file PRODOS. PRODOS, which loads ProDOS 16 (P16}
and ProD05 8 (B8}, requires compatible versions of
both.

If 2 QUIT call results in the loading of a ProD<OS 16-based
application that is too large o fit in the available memory of that foe
some other reason cannot be loaded, execution halts and the
following message is displayed on the screen:

run next application. Error=$KXEN

where 5XXXX s an emor code—typically a Tool Locator, Memary
Manager, or System Loader error code

Boolstrap ermrors

Hm-ﬂrnp_cnnm can nccur when the Apple 1GS anempts to start up
a ProDdOE 16 system disk. Errors can oecur at several points in this
process;

1. If there is no disk in the startup drive, a *sliding apple”™ symbel

(% Jappears on the screen along with the messige:
Check atartup devical

Place a system disk in the drive and press Contral-Ch-Reset to
restart the boot procedure

28]

frf thete is a disk in the drive, but it i not a ProDOS 8 or ProDOS
16 system disk {that is, there is no type $FF file named PRODOS on
0, the following message appears

UNABLE TO LOAD PRODOS

Ht‘l‘l‘lﬂ\'f.‘_ihl-" disk and replace it with another containing the
proper files, then press Control-0-Reset to restart the boot
procedure

]

||'_H1i; file named PRODOS is found, but another essental fle is
missing, a message such as

TEMSPIE Flle found

M EYSTEM nar BYELE £
0 ®.EYSTEM or x.5¥5ls le Ffound

may appear. Remove the disk and replace it with another

containing the proper files, then press Control-C-Reset 1o
restan the boot procedure.

:".r:ul{u::‘ type of ProDOS 16 boastap error ocours on other Apple
1T systems. If you try to boot 2 ProDOS 16 system disk on & standard
Apple 1T computer (one that is nof an Apple 11GS), the following
errorf message is displayed:

YRODOS 16 REQUIRES APPLE IICS HARDWARE

When IJ1.L"i ooours the disk will not boot. You can boot an Apple 11GS
System Disk only on an Apple [IGS computer

Appendix E: Emor Codes 09

System Loader errors

Nonfatal errors

Hurmibser

Maasoge and Descriplion

50000
$1101

51102

51104

41105

51107

(no error)

mot found: The specificd segment (in the load file) or
entry {in the Pathname Table or Memory Scgment
Tahle) does not exist. If the specified load file itself is
not found, a ProDOs 16 emor $46 (file not found) is
returned.

Incompatible OMF verslon: The object module
format version of a load segment (as specified in its
header) is incompatible with the current version aof the
System Loader. The loader will not load such a
scgment,

Flle is not a load file: The specified load file is not ype
$B3-$BE. See Appendix A or D for descriptions of
these file types.

Loader is busy: The call cannot be made because the
System Loader is busy with another call.

File version error: The specified file cannot be
loaded because its creation date and time do not maich
those on {5 entry in the Pathname Table

% Note: This error applies to run-time library files only

51108

51109

5110A

310 Appendxes

User ID error: The specified User ID either doesnT
exist {Application Shutdown), or doesn't match the
User ID of the specified segment (Unload Segment By
Number).

SegNum out of sequence: The value of the SEGHUM
field in the segment’s header doesn't match the
number by which the segment was specified (Load
Segment By MNumber, Initial Load)

legal load record found: A record in the segment s
of a type nol accepted by the loader,

51108 Load segment is forelgn: The values in the NUMSEX
and NUMLEN fields in the specified segment's header

are not 0 and 4, respectively (Load Segment By
Number).

$001-505F (ProDOS 16 /0 errors—see “ProDOS 16 Errors” in
this appendix.)

$201-$20A (Memory Manager errors—see Afple Has Toolbox
Reference.)

ifﬂh:la«nara

If a BroDOS 16 error or Memory Manager error occurs while the
System Loader is making an internal call, it is a fatal error, The most
common case is when a fJump Table Load is attempred for a
dynamic load segment or run-lime library segment whose volume is
not on line, Contrel is transferred to the System Failure Manager,
and the following message appears on the screen:

Error loading Dynanic SegRant-XEXX

where XXXX is the error code of the ProDOS 16 or Memory manager
error thal oocourmed

Appendi E: Emor Codas n

Glossary

absolute: Characteristic of 2 load segment or
ather program code that must be loaded at a
specific address in memory, and pever moved.
Compare relocatable,

access byte: An attribute of 2 ProDO8S 16 file that
det¢rmines what types of operations, such as
reading or writing, may be performed on the file

accumulator: The register in the microprocessar
wheore most computations are performed,

address: A number thal specifies the location of a
single byte of memory. Addresses can be given as
decimil or hexadecirmal integers. The Apple 1G5
has addresses ranging from O o 16,777,215 (n
decimal) or from $00 00 (0 1o $FF FF FF (in
hexadecimal), A complete address consists of

2 4-bil bank number ($00 1o $FF) followed by a
16-bit address within that bank (500 00 1o $F7F FF).

Apple IIGS Programmer's Workshop: The
development environment for the Apple 11GS
computer. It consists of a set of programs thai
facilitate the wriling, compiling, and debugging of
Apple 11GS applications,

application program (or applicationk (1) A
program that performs a specific task useful to the
computer user, such as word processing, data base
management, or graphics, Compare controlling
program, shell application, system program
{2} On the Apple 11GS, a program that accesses
Prals 16 and the Toolbox directly, and that can
be called or exited via the QUIT call. ProDOS 16
applications are fle type $83

APW: See Apple [IGS Programmer's

Workshop.
APW Linker: The linker supplied with APW,

ASCIN: Acronym for American Standard Code
Jor Information Interchange. A code in which the
numbsers from 0 to 127 stand lor lext characters
ASCI code is used for representing text inside a
computer and for transmitling text between
computers or berween a computer and a

peripheril device

assemhbler: A program that produces object
files (programs that conliin machine-language
code) from source files written [n assembly
language. Compare compiler.

AuxI¥: One of three fields in the User ID, a
number that identifies each application,

backup bit: A bit in a file's acoess byte thar 1=lls

backup programs whether the file has been aliered
since the last time i was backed up.

bank: A 64K (65,536-byte) portion of the Apple
IG5 internal memory, An individual bank is

specified by the value of one of the 65CB16
microprocessor's bank registers

lossary 313

bank-switched memory: On Apple [1
computers, that pant of the language card
memory in which two 4K-pordons of memory
share the same address range (SDOO0-$DFFF)

binary fle: (1) A file whose data is o be
interpreted in binary form. Machine-language
programs and pictures are stored in binary files
Compare text file. (2) A file in binary fle
format.

binary file format: The ProDOS 8 loadable file
format, consisting of one absolute memory image
along with i destination address. A file in binary
file format has ProDOS file type $06 and is
referred to a5 a BIN file. The System Loader cannot
load BIN files.

bit: A contraction of Birmary digit, The smallest
unit of information that a computer can hold. The
value of 2 hit {1 or () represents a simple two-way
choice, such as yes or no or on or off

bit map: A set of bits that represents the posilions
and states of 4 coresponding set of ilems. See, for
example, global page bit map or volume bit
g,

block: {13 A unit of data storage or transfer,
typically 512 bytes. (2) A conliguous, page-aligned
region of computer memory of arbitrary size,
allocated by the Memory Manager, Also called a
memory block,

block device: A device that transfers data to or
from 3 computer in multiples of one block (512
bytes) of characters at a time. Disk drives are biock
devices,

boot: Another way to say Stdrf 10, A computes
boots by loading a program into memory from an
external storage medium such as a disk. Boof is
short for bootsirap load: Starting up is oflen
accomplished by first loading 2 small program,
which then reads a larger program inie memory
The program iz said o “pull isell up by its own
bootstraps.”

314 Elossary

buffer: A region of memory where information
can be stored by one program or device and then
read at a different rate by anothers; for example, 3
Pral0s 16 L0 buffer.

Busy word: A firmware fag, consulted by the
Scheduler, that protects system softeane that is
not reentrant from being called while processing
another call

byte: A unit of information consisting of a
sequence of 8 bits. A byte can ke any value
berween 0 and 255 (50 and $FF hexadecimal). The
value can represent an Instruction, mumber,
character, of logical stale

eall: (v.) To request the execution of & sulrouting,
function, or procedure. {n) As n operaling
system calls, & request from the keyboard or from
a program to execule a named fundlion

call block: The sequence of assembly-language
instructions used to call ProDOS 16 or System
Loader funclions.

carry flag: A status bit in the microprocessor,
used as an additional high-order bit with the
accumulator bits in addition, subtracton,
rotation, and shift operations

character: Any symbol that has a widely
understood meaning and thus can convey
information. Most characters are represented in
the compuler as one-byte values.

character device: A device that transfers data 10
ar from a compuler a5 a stream of individual
characters. Keyboards and printers are character
devices

close: To werminate access to an open file, Whena
file {s closed, its updated version is written 1o disk
and all resources it needed when open (such as its
/0 buffer) are released. The file must be opened
before it can be accessed again

compact: To rearrange zllocated memory blocks
in order to increase the amount of L'LII'I.IJ'gLi.I'.IIJS
unallocated (free) memory, The Memory
Manager compacts memory when needed

compiler: A program that produces object files
(contalning machine-language code) from
source files wrinten in a high-lovel language such
a3 C. Compare assembler,

controlling program: A program that loads and
runs other programs, without {zself relinquishing
control. A controlling program Is responsible for
shutting down its subprograms and freeing their
memory space when they are finished. A shell, far
eximple, is a contralling program,

F'r:at{ﬂ_ﬂ date: An anribute of a PraDOS 16 file;
it speciiies the date on which the file was first
created,

crnn_li-:ln tme: An attribute of 2 ProDOS 16 file: it
specifies the time at which the fle was first created,

current applicaton: The application program
currently loaded and running. Every application
program is identified by a User [D numbers: the
current application is defined as that application
whose User ID s the present value of the USERID
global variahle

data block: A 512-byie portion of 2 PmDOS 16
standard file thar consists of whatover kind of
information the file may contain

default prefix: The pathname prefix attached
by ProDOS 16 10 a partial pathname when

ng prefix number is supplied by the application.
The default prefix s equivalent (o prefix

mumber 0/

dereference: To substinute a pointer for a
memory handle. When you dereference a
memary block's handle, you access the block
dircetly (through its master polnter) rather than
indirectly (through its handle)

desk accessories: Small, spedial-purpose
programs that are available to the user regardless
of which application Is running—such as the
Contral Panel, Caloulator, Note Pad, and Alarm
Clock

desktop: The visual interface between the
computer and the user, In computers that SUPPIT
the desktop concept, the desktop consists of g
menu bar at the top of the sereen, and a Eray anca
in which applications are opened as windows, The
deskiop interface was first developed faor the
Macintosh computer,

dh'_icc: A piece of equipment (hardware) used in
conunction with 2 computer and under the
computer’s control. Also called a peripheral
device because such equipment is often physically
separate from, but atached 10, the computer,

device driver: A program that manages the
transfer of information between 2 computer and a
peripheral device

direct page: A page (256 bytes) of bank 500 of
Apple IGS memory, any part of which can be
addressed with a short (one byte) address because
its high address byte Is always 500 and its middle
ddress byte is the value of the 650816 direct
reglster. Co-resident programs or routines can
have their own direct pages at different locations,
The direct page corresponds to the 6502
processor's zero page. The term direct page is
ofen used informally to refer to any part of the
lower portion of the direct-page/stack space.

direct-page/stack space: A portion of bank $00
of Apple IIGS memory reserved for a program's
direct page and stack. Initially, the 650816
processor's direct register contains the hase
address of the space, and its stack register
containg the highest address. In use, the stack
prows downward from the op of the direct-
page/stick space, and the lower part of the space
contains direct-page data

Glossary 315

direct register: A hardware register in the 65C816
processor that specifies the stan of the direct page.

directory file: One of the two principal categories
of ProDOS 16 files, Directory files contain
specifically formaned entries that contain the
names and disk locations of other files. Compare
standard file. Directory files are either volume
diréctories or subdirectories.

disk device: See block device,

disk operating system: An operating system
whose principal function is to manage files and
communication with one or more disk drives,
DOS and ProDOS are two families of Apple T disk
operating sysiems

dispose: To permanently deallocate a memory
block. The Memory Manager disposes of a
memary block by removing its master pointer.
Any handle o that pointer will then be invalid
Compare purge.

dormant: Said of a program rthat is not being
executed, but whose essential parts are all in the
computer’s memory. A dormant program may be
quickly restarted because it need not be reloaded
from disk.

DOS: An Apple I disk operating system, 208 is an
acronym for Disk Operating System
dynamic segment: A segment that can be

loaded and unloaded during execution as needed
Compare static segment.

e flag: A flag bit in the 63C816 that determines
whether the processor is in native mode or
emulation mode.

B-hit Apple TI: See standard Apple 1L

emulation mode: The 8-bil configuration of the
650816 processor, in which it functions like a 6502
processor in all respects excepl clock speed.

A Glossary

EOF (end-of-fle) The logical size of a ProDOS 16
file; it is the number of bytes that may be read
from or written to the file.

error (or error conditdon): The state of a
computer after it has detected a fault in one or
more commards sent 1o i

error code: A number or other symbaol
representing a type of emmor.

event: A notification 1o an application of some
occurrence (such as an interrupt generated by

a keypress) that the application may want 1o
respond 1o

event-driven: A kind of program that responds 1o
user inputs in real time by repeatedly esting for
events posted by interrupt routines. An event-
driven program does nothing untl it detects an
event such as a keypress.

external device: See device.

fatal error: An error serious enough that the
computer must halt execution,

flle: A named, ordesed collection of informaticn
stored on a disk.

file control block (FCBY A data structure set up
in memory by ProDOS 16 1o keep track of all open
files.

file entry or file directory entry: The part of 2
ProDdOS 16 directory or subdirectory that
describes and points 1o another file. The file so
dezcribed is considered 1o be *in® or "under® that
directory.

file level: See system file level

filename: The string of characters that identifies a
particular file within its directory. ProDOS 16
filenames may be up o 15 characters long
Compare pathname,

file system ID: A number describing the general
category of operating system o which a file or
volume belongs. The file system 1D is an input o
the ProD}OS 16 FORMAT call, and a result from
the VOLUME call

file type: An anribute in a ProDOS 16 file's
directory entry that characterizes the contents of
the fle and indicates how the file may be used. On
disk, file types are stored as numbers; in a

directory lsting, they are ofien displayed as three-

character mnemonic codes.

filing calls: Operating system calls that
manipulate files, In Prol¥0S 146, filing calls are
subdivided into file housekeeping calls and file

accers calls.

finder: A program that performs file and disk
utilities (formartting, copying, renaming, and so
an) and also starts applications at the request of
the user

flrmware: Programs stored permanently in the
computer's read-only memory (ROM). They can
be executed at any tme but cannot be modified or
crasod.

fixed: Not movable in memory once allocated.
Also called wunmopable, Program segments that
must nod be moved are placed in fixed memory
blecks. Opposite of movable.

flush: To update an open file Cwrite any updated
information 1o disk) without closing it

global page: Under ProDOS B 25 bytes of data at
4 fixed l5eatioh (A memary, conlaining usehil
system information {such as a list of active
devices) available to any application

global page bit map: A portion of the ProlX05 8
global page that keeps track of memony use in the
computer, Applications under ProDOS 8 are
responsible for marking and clearing pars of the
bit map that correspond 10 memory they have
allocated or freed,

guest file system: A file system, other
than ProlXO5 16, whose files can be read by
ProDOS 16,

handle: Se¢ memory handle.

hexadecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the six lefters A
through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of four bits, In Apple manuals
hexadecimal numbers are usually preceded by a
dollar sign ($).

hierarchical file system: A method of
organization in which disk files are grouped
together within directories and subdirectories.
In a hierarchical fle system, a file is specified by
its pathname, rather than by a single filename.

high-order: The most significant part of a
numerical quantity. In normal representation, the
high-order bit of a binary value is in the leftmost
position; likewise, the high-order byte of a binary
word or long word quantity consists of the
lefimost eight bits,

Human Interface Guidelines: A set of software
development guidelines developed by Apple
Computer o support the desktop concept and to
promote uniform user interfaces in Apple 1T and
Macintosh applications.

image: A representation of the contents of
memory. A code image consists of machine-
language instructions or data that may be loaded
unchanged into memory,

index block: A 512-byte pant of a Prold05s 16
standard file that consists entirely of pointers to
other parts (data blocks) of the file.

initial load file: The first file of a program w be
loaded into memory. II contains the program's
main segment and the load file tables (Jump Table
segment and Pathname segment) needed (o load
dynamic segments and run-time libraries,

Glossary 3z

inidalization segment: A segment in an inidal
load file that is loaded and executed
independently of the rest of the program. It is
commonly executed first, to perform any
initialization that the program may require.

input/output: The ransfer of information
between a computer’s memory and peripheral
devices.

Interrupt: A lemporary suspension in the
execution of a program that allows the computer to
perform some other task, typically in response 1o 2
signal from a device or source external (o the
computer,

interrupt handler; A program, associated with a
partlcular external device, that executes whenever
that device sends an interrupt signal o the
computer. The interrupt handler performs its lasks
during the interrupt, then retums control to the
compuier 50 it may resume program execution.
interrupt vector table: A mble maintained in
memory by PraD0S 16 that contains the addresses
of all currently active (allocated) internapt
handlers.

INTERSEG record: A part of a relocation
dictionary, It contains relocation information for
external (intersegment) references.

L0z See input/output.

JML: Unconditional Long Jump; a 65CA16
assembly-language op code, It takes a 3-boie
address operand. A JML can reach any address in
the Apple [1GS memory space.

JMP: Unconditional Jump; a 6502 and 65C816
assembly-language op code. It takes a 2-byte
address operand. A JMP can reach addresses only
within a single 64K bank of the Apple 1G5 memory
space.

kAT] Glossary

JSL: Long Jump to Subroutine; a 65C816
assembly-language op code. 1t takes a 3-byle
address operand. A JSL can access any address in
the Apple [IGS memory space.

JSR: Jump to Subroutine; a 6502 and 650816
assembly-language op code. Tt takes a 2-byte
address operand. A JSR can access addresses only
within a single 64K bank of the Apple TGS memory
space.

Jump Table: A table constructed in memory by
the System Loader from all Jump Table segments
encountered during a load. The Jump Table
contains all references to dynamic segments that
may be called during execution of the program

Jump Table directory: A masler list in memory,
containing pointers to all segments that maks up
the Jump Table.

Jump Table segment: A segment in a load fie
that contains all references (o dynamic segments
that may be called during execution of that load
file. The Jump Table segment is created by the
linker, In memory, the loader combines all Jump
Table segments it encounters into the Jump
Table.

E: Kilobyie. 1024 (217 byies.
kernel: The central part of an operating sysiem.

Pro[¥)5 16 is the kernel of the Apple 1IGS
operating system.

key block: The first block in any ProDROs 16 file,
kind: See segment kind.

language card: Memory with addresses between
$D000 and $FFFF on any Apple O-family
computer. It includes two RAM banks in the
$D:cxx space, called bank-switched memaory.
The language card was originally a peripheral
card for the 48K Apple 1T or Apple 1T Plus that
expanded ils memory capacity to 64K and
provided space for an additional dialect of BASIC,

level: See system file level

library file: An object file containing program
segments, each of which can be used in any
number of programs. The linker can search
through the library file for segments that have
been referenced in the program source file,

Hnker: A program that combines files generated
by compilers and assemblers, resolves all
symbolic references, and generates a fle that can
be loaded into memory and executed

load file: The output of the linker. Load fGbes
contain memory images that the system loader
can load into memory, ogether with relocation
dictionaries that the loader uses to relocale
references

load segment: A segment in a load file.

lock: To prevent a2 memory block from being
moved or purged. A block may be locked or
unlocked by the Memory Manager, or by an
application through a call to the System Loader

long word: A double-length word. For the Apple
oS, a long word is 32 bits (4 bytes) long.

low-order: The least significant pant of a
numerical quantity. In normal representation, the
low-grder bit of a binary number is in the
rightmost positon; likewise, the low-order byte of
a binary word or long word quantity consists of
the rightmost eight bits

m flag: A flag in the G5CA16 processor that
determines whether the accumulator is 8 bits wide
ar 16 hits wide

macroe: A single predefined assembly-language
pseudo-instruction that an assembler replaces with
several actual instructions. Macros are almaost like
higher-level instroctions that can be used inside
assembly-language programs, making them easier
o wrile.

MainID: One of three Gelds in the User ID, a
number that identifies each application.

main segment: The first static segment {other
than initializaton segments) in the initial load file
of a program. Tt is loaded at startup and never
removed from memory until the program
lerminales.

Mark: The current position in an open file. 1t is the
point in the file at which the next read or write
operation will coour.

Mark List: A table maintained in memory by the
System Leader 1o help it perform relocation
rapidly.

master index block: The key block in a ProDO5
16 tree file, the largest organization of a
standard fle that ProDOS 16 can support. The
master index block consists solely of pointers 1o
one or more index blocks.

master polnter: A pointer to a memory block, it
is kept by the Memory Manager, Each allocated
memory block has @ master pointer, but the block
is normally accessed through its memaory handle
{which points to the master pointer), rather than
through the master pointer itself

Mb: Megabyte, 1,048,576 (220) bytes.
memory block: See block (2.

memory handle: The identifying number of a
particular block of memory. It & a pointer to the
master pointer to the memary block. A handle
rather than a simple pointer is needed o reference
a movable memory block; that way the handle will
always be the same though the value of the pointer
may change as the block is moved around,

Memory Manager: A program in the Apple 11GS
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory s
available, and allocates memory blocks 1o hold

program segments o datd,

Glossary 39

Memory Segment Table: A linked list in
memory, credted by the loader, that allows the
Ioader to keep track of the segments thar have been
loaded into memory.

MLE Machine Language Imerface—ithe part of
ProDOS B that processes operaling system calls.

modification date: An atsibute of a ProDOS 16
file; it specifies the date on which the content of
the file was last changed.

modification time: An attribute of a ProDOS 16
files; it specifies the time at which the content of the
file was last changed

monitor: See video monltor,

Monitor program: A program built into the
firmware of Apple I computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level

move: To change the location of 2 memory block
The Memory Manager may move blocks 1o
consolidate memaory space.

movable: A memory block auribute, indicating
that the Memory Manager is free (o move the
block. Opposite of fixed. Only position-
independent program segments may be in
movable memory blocks. A block is made
movable or fixed through Memory Manager calls

native mode: The 16-bit operating configuration
of the 65C816 processor,

newline mode: A file-reading mode in which
each character read from the file is compared toa
specified chamcter (called the newline
character); if there is a match, the read is
terminated. Newline mode is typically used to read
individual lines of text, with the newline character
deflined as a carniage returmn.

320 Glossary

nibble: A unit of information consisting of one-
half of a byte, or 4 bits. A nibble can wke on any
value between 0 and 15 (50 and §F hexadecimal),

NIL: Pointing to a value of 0. A memaory handle is
NIL If the address it points to is filled with zeros.
Handles 1o purged memory blocks are NIL.

null: Zaro

null prefix: A prefix of zero length Gand therefore
nonexistent,

object file: The cutput from an assembler or
compiler, and the input 1o a linker. It contains
machine-language instructions. Also called offec
program or ofyfect code. Compare source file.

object module format: The gencral format used
in Apple 1IGS object files, library files, and load
files.

OMF file: Any file in object module format
op code: See operation code.

operating system call: A request to execute a
named operating system lunction; also, the name
of the function itself. OFEN, GET_FILE INFO,
and QUIT are ProDOS 16 operating system calls

open: To allow access (o a file, A file may not be
read from or writen o until it i open.

operand: The part of an assembly language
instruction that follows the operatdon code. The
operand is used as a value or an address, or to
caloulate a value or an address.

operating environment: The overall hardware
and software setting within which a program runs,
Also called execution environment.

operating system: A program that organizes the
actions of the various parts of the computer and its
peripheral devices. See also disk operating
system

operation code: The part of 2 machine-language
instruction that specifies the operation to be
performed. Often called ap code.

page: (1) A portion of memary 256 bytes long and
beginning at an address that is an even multiple of
256, Memory blocks whose starting addresses are
an even muliple of 256 are said to be page-
aligned. (2} An area of main memory containing
text or graphical information being displayed on
the screen.

parameter: A value passed to or from a functicn
ar other routine.

parameter block: A set of contiguous memory
locations, set up by a calling program 10 pass
parameters to and receive results from an
operating system function that it calls. Every call
to ProD05 16 must include a pointer to a properly
constructed parameter block.

partial pathname: & portion of 2 pathname
including the fillename of the desired file but
excluding the volume directory name {and
possibly one or more of the subdireciories in the
pathname), It is the part of a pathname following a
prefix—a prefix and a panial pathrame together
constinuie a full pathname. A parial pathname
does not begin with a slash because it has no
volume directory name,

patch: To replace one or more bytes in memory
or in a file with other values, The address 1o which
the program must jump 1o execute a subroutine ks
petiched into memory at load dme when a file is
relocated.

pathname: The complete name by which a file is
specified. It is a sequence of flenames separated
by slashes, staning with the filename of the volume
directory and following the path through any
subdirectories that a program must follow 1o locate
the file. A complete pathname always begins with a
slash /), because volume directory names always
begin with a slash.

Pathname segment: segment in a lnad file that
contains the cross-references between load files
referenced by number (in the Jump Table
segment) and their pathnames (listed in the file
directory). The Pathname segment is created by
the linker.

Pathmame Table: A uble construcied in memory
from all individual Pathname segments
encountered during loads. It contains the cross-
references between load files referenced by
number (in the Jump Table} and their pathnames
(listed in the file directory).

pointer: An item of information consisting of the
memory address of some other item. For
example, the 65C816 stack register contains a
pointer o the top of the stack,

position-independent: Code that is written
specifically so that its execution is unaffected by its
position in memory, It can be moved without
needing 10 be relocated,

prefix: A portion of a pathname starting with a
volume name and ending with a subdirectory
mame, It is the pan of a pathname before the
partial pathname—a prefix and 4 parial
pathname together constitute a full pathname. A
prefix abways stars with a slash {7 because a
volume directory name always starts with a slash,

prefix number: A code used 1o represent a
particular prefix. Under ProDd5 16, there ane
nine prefix numbers, each consisting of 2 number
(or asterisk) followed by a stash- 0/, 1/...8/,
and */,

ProDO&: A family of disk operating sysiems
developed for the Apple [1 family of computers,
ProD05 stands for Professional Disk Operating
System, and includes both ProDO5 B and
ProlO5 16

Glossary 321

ProDOS B: A disk operating system developed
for standard Apple [T computers, It ns on
G502-series microprocessors. 1t alsa runs on the
Apple 1G5 when the 65C816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system
developed for 65CA16 native mode operation on
the Apple 11GS, It is functionally similar 1o
ProDOS B but more powerful,

pull: To remove the top entry from a stack,
moving the stack pointer 1o the entry below iL
Synonymous with pof. Compare push,

purge: To wemporarily deallocate a memory
block, The Memory Manager purges a hlock by
seiting its master pointer to NIL (00, All handles 1o
the pointer are stll valid, so the block can be
reconstructed guickly. Compare dispose.

purge level: An attribute of 3 memory block that
sels its priodty for purging, A purge level of 0
means that the block is unpurgeable,

purgeable: A memory block atribute, indicating
that the Memory Manager may purge the block if it
needs additional memory space. Purgeable blocks
have different purge levels, or priorities for
purging; these levels are set by Memory Manager
calls.

push: To add an item to the top of 1 stack,
moving the stack pointer to the next entry above
the top. Compare push.

quene: A list in which entries are added at one end
and removed at the other, causing entries 1o be
removed in frst-in, first-oul (FIFO) order.
Compare stack.

quit return stack: A stack maintained in memory
by ProDOS 16, It contains a list of programs that
have terminated but are scheduled 1o setum when
the presently executing program is finished

322 Glossary

random-access device: See block device.

record: A component of an load segment. All
OMF file segments are composed of records,
some of which are program code and some of
which contain cross-reference or relocation
information.

reentrant: Said of 2 routine that is able to acoept
a call while one or more previous calls to it are
pending, without invalidating the previous calls,
Under cenain conditions, the Scheduler
manages execulion of programs that are not
reentrant

reference: (n) The name of a segment or entry
point to a segment; same 15 Symbolic reference.
(¥ To refer 1o a symbolic reference or 1o use one
in an expression or a5 an address,

Reload segment: a load-file segment that is
always loaded from the file at program startup,
regardless of whether the rest of the program is
loaded [rom file or restarted from memory.
Reload segments contain Indtialization
information, without which cenain types of
programs would not be restarable

RELOC record: A pant of a relocation dictionary
that contains relocation informaton for local
{within-segment) references,

relocate: To modify a file or segment at load time
50 that it will execute correctly at its current
memory location, Relocation consists of
patching the proper values onto address
operands, The loader relocates load segments
when it loads them into memory. See also
relocatable.

relocatable: Characteristic of a load segment or
other program code that includes no absolute
addresses, and so can be relocated at load time. A
relocatable segment can be static, dynamic, or
pasition independent. It consists of a code image
foliowed by a relocation dictionary. Compare
absolute.

e ———

relocation dictionary: A portion of a load
segment that containg relocation information
necessary o modify the memory image portion of
the segment. See relocate.

restart: To reactivale a dormant program in the
computer's meémory. The System Loader can
restart dormant programs if all their static
segments are still in memory. If any critical part of
a dormant program has been purged by the
Memory Manager, the program must be reloaded
from disk instead of restarted.

restartable: Said of a program that reinitializes its
variables and makes no assumptions about
machine state each time it gains contrel. Only
restartable programs can be executed from a
dormant state in memory,

result: An item of information reurned to a
calling program from a function. Compare value,

RTL: RBeturmn from subroutine Long; a 65CB16
assembly-language instruction. It is used in
conjunction with a JSL instruction

RTS: Return from Subroutine; a 6502 and 65CB16
assembly-language instruction, It is used in
conjunction with 2 J5R instmction

run-tlme Hbrary flle: A load fle containing
program segments—each of which can be used in
any number of programs—that the System Loader
loads dynamically when they are needed.

sapling file: An crganizational form of a PralOs
16 standard fle. A sapling file consists of a single
index block and up 1o 256 data hlocks.

Scheduler: A firmware program that manages
requests 1o execuls interrupted software that is
not reentrant. If, for example, an interrupt
handler needs to make ProDOS 16 calls, it must do
so through the Scheduler because ProDOS 16 is
not reentrant, Applications need not use the
Scheduler because Prol¥OS 16 is not in an
interrupled state when it processes applications’
system calls,

sector: A division of a track on a disk. When a
disk is formatted, its surface is divided into tracks
and sectors.

seedling file: An organizational form of a
ProDO5 16 standard fle. A seedling file consists
of a single data block.

segment: A component of an OMF file,
consisting of a header and a body. In load files,
each segment incorporales ane of mofe
subroutines,

segment kind: A numerical designation used o
classify a segment in object module formar It is
the valoe of the KIND feld in the segment’s
header

sequential-access device: $ee character
device.

shadowing: The process whereby any changes
made to one part of the Apple [1GS memaory are
automatically and simultaneously copied into
another part. When shadowing is on, information
witten 1o bank $00 or $01 is automatically copled
into equivalent locations in bank $E0 or $E1.
Likewise, any changes to bank $ED or 3E1 are
immediately reflected in bank $00 or $01.

shell application: A type of program that is
launched from a controlling program and
runs under its control. Shell applications are
ProDOs 16 file type SB5.

soft switch: A location in memory that produces
some specific effect whenever its contents are read
or wrillerl,

source file: An ASCH file consisting of
instructions writlen in a particular language, such
as Paseal or assembly language. An assembler or
compiler convens source files into object fles.

Glossary 323

S —

sparse file: A variation of the organizational
forms of ProDOS 16 standard files. A sparse file
may be cither a sapling file or a tree fle; whal
makes il sparse is the fact that its logical size
{defined by its EOF) is greater than its actual size
on disk, This occurs when one or more data
blocks contain nothing but zeros, Those data
biocks are consldered to be pan of the file, but
they are not actually allocated on disk until
nonzero data is weitten 1o them,

special memory: On an Apple 11GS, all of banks
500 and $01, and all display memory in banks $E0
and 5EL. 5o called because it is the memory
directly accessed by standard Apple I programs
running on the Apple IG5 y

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing them to be removed in last-in,
first-out (LIFC) order, The term the stack usually
refers 1o the particular stack pointed to by the
65CE16's stack register, Compare queue,

stack register: A hardware register in the 65C816
processor that contains the address of the wop of
the processar's stack.

standard Apple I: Any computer in the Apple 11
family except the Apple 1G5, That includes the
Apple 11, the Apple T Plus, the Apple e, and the
Apple Nc,

standard file: One of the two principal categories
of ProDOS 16 files. Standard files contain
whatever data they were created to hold; they have
no predefined internal format Compare
directory file.

start up: To get the system running. It involves
loading system software from disk, and then

loading and running an application. Also called
boot,

static segment: A segment that is loaded only at
program boot time, and is not unloaded during
execution. Compare dynamic segment.

324 Glossary

storage type: An attribute of a ProDOS 16 file that
describes the file’s organizational form (such as
directory file, seedling file, or sapling fle).

subdirectory: A ProD0O5 16 directory file that is
not the volume directory,

switcher: A controlling program that rapidly
transfers execution among several applications,

system: A coordinated collection of inerrelated
and inleracting parts organized to perform scme
function or achieve some purpose—For example,
i compuler sysiem COmPprising a processor,
keyboard, monitor, disk drive, and software

system call: See operating system call.

system disk: A disk that contains the operating
system and other system software neaded o ren
applications.

System Fallure Managern A firmware program
that processes [atal errors by displaying a message
on the screen and halting execution.

system file: See system progrim.

system file level: A number between $00 and 3FF
associated with each open ProDOS 16 fle. Every
tme a file is opened, the current value of the
system file level is assigned to it If the system file
level is changed (by 2 SET_ LEVEL call), all
subsequently opened files will have the new level
assigned to them. By manipulating the system file
level, a controlling program can easily dose or
Nush fles opened by its subprograms.

System Loader: The program that manages the
Ioading and relocation of load segments
(programs} into the Apple 1G5 memory. The
System Loader works dosely with ProlX08 16 and
the Memory Manager.

system program: (1) A software component of a
computer system that supports application
programs by managing system resources such as
memory and 1O devices, Also called system
soffware. (23 Under ProDOS 8, a stand-alone and
potentially self-booting application. A ProDOS 8
system program is of file ype 3FF; if it is seli-
booting, its filename has the extension . SYSTEM

system software: The components of a
computer system that suppon application
programs by managing system resources such as
memory and L0 devices.

took: See tool set.

tool set: A group of related routines (Gsually in
firmware), available 1o applications and system
software, that perform necessary functions or
provide programming convenience. The Memory
Manager, the Sysiem Loader, and QuickDraw 11 are
toal sets.

toolbox: A collection of built-in routines on the
Apple 11GS that programs can call to perform
many commonly-needed functions. Functlons
within the toolbox are grouped into tool sets,

track: One of a series of concentric drcdes on a
disk. When a disk is formatied, 1ts surface is
divided into tracks and sectors.

tree file: An crganizational form of 2 ProDOS 16
standard RAle. A tree file consists of a single
master index block, up 1o 127 index hlocks,
and up 1o 32,512 data blocks,

TypelD: One of theee fields in the User ID, a
number that identifies each application.

unload: To remove a load segment from memory.
To unload a segment, the System Loader does not
actually *unload” anything; it calls the Memory
Manager 1o either purge or dispose of the
memory block in which the code segment resides,
The loader then modifies the Memory Segment
Table 1o reflect the fact that the segment is no
longer in memory.

undmovible: §6s fxed.

unpurgeable: Having a purge level of zero. the
Memory Manager is not permitted to purge
memaory blocks whose purge level is zero.

User ID: An identification number that specifies
the owner of every memory block allocated by the
Memory Manager. User TD¥s are assigned by the
User 1D Manager,

User ID Manager: A tool set that is responsible
for assigning User [I's to every block of memory
allocated by the Memory Manager,

vilue: An item of information passed from a
calling routine to a function. Compare result.

video monitor: A display device that receives
video signals by direct connection only.

version: A number indicating the release edition
of 4 particular piece of software, Version numbers
for most system software (such as PraDOS 16 and
the System Loader) are available through function
calls.

volume: An object that stores data; the source or
destinatlon of information. A volume has 4 name
and a volume directory with the same name;
information on a volume is stored in files.
Volumes typically reside in devices; a device such
as a floppy disk drive may contain one of any
mumber of volumes (disks),

volume bit map: A portion of every PraDO5 16-
formatted disk that keeps track of free disk space,

volume control block (VCBk A data structure set
up in memory by ProDOS 16 to keep tack of all
volumes/devices conneciled (o the computer.

volume directory: A ProD05 16 directory file
that is the principal directory of a velume, It has
the same name as the volume, The pathname of
every file on the volume stars with the volume
directory name.

volume name: The name by which a particular
volume is identified. It is the same as the filename
of the volume directory file.

Glossary 325

word: A group of bits that is treated as a wnit, For
the Apple 11GS, a word is 15 bits (2 bytes) long.

zero page: The frst page (256 bytes) of memory
in a standard Apple I computer {or in the

Apple IG5 computer when running a standard
Apple 11 program). Because the high-order byte
of any address in this part of memory is zem,
only a single byte is needed o specify a sero-page
address. Compare direct page.

A28 Glossary

A

absalule code 183

absolute segment. See segment(s)

access atiribute 14, 21, 258, 260,
264, 177

backup bit 134, 277
write-enahle bit 137

accessing. See deviee(s); disks

accumulator 77-78, 104, 209, 213

addresses, See memory; direct
page and stack

alignmemt factor 99, Ses alro
segmeni{s)

ALIGN segment header Geld 186,
299, See alio headers;
segment{s)

ALLOC_INTERRUPT call 48, 80,
o, 284

description of 175-176

Apple computers xx, 4. S alio
spwrcific comnaier

Apple Desktop Interface 90-91

AppleTalk Personal Metwork 65

.i.pp'lz N Sew akao .ﬁ.pplr 1L,
standard

definition of xx
opcratlng systems 281-284
Ero page 75, B8

Apple 11, standard 182

definition af xx
software for 34

Apple Te 34

Apple 1le 34

Apple Iags. Seée alve ProlDd05 8,
ProliOs 16, manuals or specific
Ty

Index

default upemlng syslem 13
description of 4
logical diagram af 6
memory 9, 3240 See alio
programming levels in 57
spstem disks 52-55. See alio
system disks
Apple llcs Programmer's Workshop
xx, xvili, 70, 89-00. Sor albo
programming
File Type utllity &%
Linker TO, B9
Shell B2, 89 208
Apple llas Toolbox xix, 6, @
Apple 11 operating systems
2H1-18H. See alio operating
systemis) or specific operating
System
application{s) 58, 74-75
Apple 11G$ Programmer's
Workshop and 89
as controlling programs 184,
208, Sew abo controlling
programs
definiion of 74
dormant 185, 235, 233, 246,
S alyo System Loades
evenl-driven and su:g'mznh:d. xix
loading 5. 71, B2-83, B9, See
alio System Loader
memory and 33, 3040 Ses
alvo memory
prefixes, See pathname prefixes
programming requirements for
T4-75

quitting 59-65. See alio
PQOIT; QDIT call
reloading 71, 168
restarting 62, 71, 77, 168,
209-210, 233, 240, 245
Sep also Restant call; System
Loader
revising ProDOS 8 for ProlO8 16
H-HY
shell 208
shutting down 205-210
starting &2, &4, 58-65, 167, 122
machine configuration at launch
B4, 81
Application Shudown call (System
Loadery T7
application system disks. See
system disks
APW. Sew Apple [lcs
Programmer's Workshop
A register, See acourmulalor
ASCI character set 292-293
Assembler (APW) B9
assemblers, macro libraries and xv
assembling &9
assembly languape xv, xvill
labels, typographic convention [or
XKi
Auxll. See User [
auxiliary wype 279-2B0

backup bit 134, 277
banks, memory, See memory
banks

BANESIZE segment header field
186, 299, See alio headers;
segment(s)

bank-switched memory. See
memory

BASIC imterpreter (BASIC.
SYSTEM) 25, 34

binary file (PraDOS B 12, 224,
283

bit map, volume. See volume bit
m

block devices 9, 14, 4243, B4
See alto device(s)

blocks. Seecall blocks; Me blocks;
file control Block; memony
blocks; pammeter biocks;
volume control blocks

beot ingialization, See system
Stanep

boot prefix 65, 67, 167

bootstrap errors. See efroes

buifers
display 33
Yo 14, 21-22, -25, 137.
Sew alio inpur/output

busy errar. See errors

busy flag 36, 96

Busy word (Scheduler) 71, 56

byte(s)

locating in MHes I74-275
size of 33

C

call blacks &%, 100101, 213

calling program (ealler) 100, 213

calls, Se¢ Exerciser; Memory
Manager;, parameter(s); Prold0s
B; registers; system calls; ool
calls or specific call

capitalization 18

cards. See 80column card;
language card

cataloging disks xv, 26, 278-279

C Compiler (AP 89

CHANGE PATH eall 11-12, 21,
257, 260, 262, 286

description of 117-118

character devices 9, 43, Soe alo

device(s)

3z8 Inclex

character /O 6 Ser albo
input/output
cINTERSEG recorda 187, 296
Cleanup call (System Loaderd 227,
231, 245
description of 249-250
CLEAR_BACEUP_BIT call 12, 260,

204, 2T
description of 134
cLoSE call 21, 24-25, 151-152,

2, 27T
deseription of 145
closing files. Sew file(s)
cofTumUlnication ports o, 43
communications programs §3
compaction 38
compatibility, softaare 4, 10-11,
Seq alio ProDO5 B and PraDOS
16
compiler. See C Compiler
ﬁumpillng BO
configuration
hardware, ProDOS B and Prold05
16 87
setting initlal &4, Bl Ses alio
programming
controd blocks, See file contral
blacks: valume contral blocks
cantrolling progams 71, B2,184,
204, 207-210, 213, 222,
224-225, 240, 244, 249, Sen
aln application(sl; System
Losader
destgning 207-209
Control Panel sellings 46
Control-Reser 25
cumnerl.ing Programs
8 and ProDOS 16
copying
liles B4-85
sparsa files 30, B&
CPUs, See 6502; 650816
CREATE call 21, BS, 103, Z77, 267
description of 111-114
creating files. See file(s)
creatlon date and ime 14, 21,
B4-86, 119, 258, 260, 263,
76 See alio modification
date and time; Programming
creatlon field 276

See ProDOs

cHELOC records 187, 297

D

dars bank regisier 104
data blocks. Seefile blocks
dates. See creation date and tme;
modification date and Lime
DB regimer. Ser dats bank regiser
DEALLOC _INTERRUPT cmll 48, 95,
177
d.i"_ﬂ::rl'rﬂ.lﬂl'l of 175
debuggers 61, B9
deleting fMes. See lilefs)
dereferencing. See memory
handies
desk acocssorics 52-%4, 170
liles 53=54
User ID and T1
DESTROY call 211, 115-116
development environment, See
Apple llGs Programmer's
Workshop
device(s} B, 42-46, See alo
intermupe(s); system calls o
accessing 43-45, Bl See alo
programming
block B, 14, 42-43, B4
block read and Block write 44-4%
charscier 9, 43
definition of 42
farmatting disks. See disks
Inpast 4243
inputfoutpur 42
interrupt-handling and 4742
Sea aleo intermopt handlors
last-accessed 44
mamed 7,10, 45-46, 44, 128
numbers 45, 155
anline, murmber suppored 15
ouput 42-43
sequential-access 43
walume comndral blocks and 47
Lo alio volumes)
device calls, See sysiem calls
device drivers 43, 254
l_ll.-.-.-'ine-irvdl.-.p-cnd.cnrr a1

device search at system stanup
4548, See alio system
startup
dictionaries. See relocation
dictienaries
directories. Sew directory files; file
directory entry; subdireciories;
volume(s)
directory files 26-27, 255-266
format and organlzation of
25-27, 155-266
file entries 261-264
poiniter fields 256
subdirectory headers 259261
volume directory headers 256
reading 265-266
diredory headers, volume
256-259. See alio volume(s)
direct page, definition of 75. See
alia zero page
direct page and stack &4, 75-79,
200-201. See alo stack(s)
addresses 75, 77, 200-201
allocation at run lime T7-T8
automalic allocation of T5-T5
default allocation T8
definition during program
development 76
direct-page/stack segments 76,
T8, 186, T34, See abo
segment(s)
dlreet regisier 70, 77=79, 104
hardware stack 75
imroduction w 75-T%
manual allocation of 78-79
PraDOS 16 default 78
direct register 70, 77-79, 194
See alio registers
disk drives 43, 45, %6, See alo
device(s)
recommended number of xvii
type and location of 7
disk pon xix, 45
disks 7-8, 52-55. Se¢ alio
system disks
accessing 5
cataloging xv, 26, ZTR-279
DS 3.3, reading 284
formatting 14, 45. See alo
FORMAT call

imlegrity, damaging 25
pamitloned 111
EAM 43
disk-switched errors. Sew errors
Disk 11 43, 46
dispatcher. Sew Interrupt dispatcher
display, high-resolution. See high-
resolution display
display bulfers 33, Soe alio
buffers
DispeseiHandle call (Memory
Manager) 79
disposing. See memory blocks
danmant state. See applicationds),
Systedn Loacer
DO, See alio operating systemds}
file system 284
filing calls 235
history of Z81-282
/o 285
interrupt suppon 238
memory management 287
OS5 3.3 disks, reading 284
D register. Sew direct register
drivers, device. See device drivers
DS records 187, 267
dynamic segments. See
segment(s)

Ediiar (APW) 89
e-flag 64
B-bit mode, See emulation mode
Bl-column card 54
emulation mode 4, 9, 47, 100,
See alte programming
end of file. See EOF
END recard 298
enhanced guiT call (ProDdOS &)
G061
emiry, file. Seefile directory entry
enlry points axd, 35, 100, 213,
300
environment calls. Ser system calls
EQF (end of filed 21-24, 24, 30,
143, 147-150, 263, 269,
A72-IT3. See alio filels)
maximum value 269
sparse files 273

emors 302-311
hootstrap (ProD0S 16} 309
disk-switched 304
fatal 307-308; 311
nonfatal 302-307; 310
“PraD05 is busy” 83, 96
eveni-driven programming Xix
events, handling 7
Exerciser, ProDOs 16 xviil, 54,
106, 2B9-254
calls and 106
commands 201-294, See alio
spacific command
ﬂll.ing 2E5
system calls and 290
Exit o Manitor command
(Exerciser) 293-29%4
expansion card ROM. See ROM
EXpansion memory. See momoey

expansion slots 45-46
extended Bl-column card. See BO-

column card

external devices. See device(s)

F

fatal erroes, See errors

FCH. See file controd block
feedback 90

felds. See alio specific ffeld name

directory header 275-280

file entry 275=380

pointer {directory files) 256

segment header 186, F75-280,
=9

size in parameter blocks 105

file(s} 7-8, 22, 18-30, 253-280

access and manipulation of 14

altering contents of BS

binary (PraD0S 8) 12, 224, 283

blocks. Seefile blocks; file
control blocks

characieristics of 22

closing 24-35, 85, 167

compalibility 283-284

contred block. See file contral
blexcks

copying B4-8%

creating 21, BS

creation date and time 14, 21,
B4-86, 119, 258, 260, 263

definition of 7

deleting 21, 85

desk accessory 5354

directory. See directory files

directory entry, See file directory
entry

end of (EOF) 21-24, 26, 30,
143, 147-150, 263, 269,
If2=173
Introduction o 22-23

NMushing 24-25, 146

format of 21, 26-30, 253

hierarchical relationships among
26

O buffer 21-22, 24, 137, 145
Sew alvo inputfoutput

migtlalization 53-54

introdoction o 18-30

levels. See sysiem file level

load. Seeload Nles

locating bytes in Z74-275

Mark 21-24, 20, 30, 143,
201-202, 273-274
Introduction to X2-23

maodification date and time
84-86, 24

narnes. See (llenames

object 29

open, maximum number of 22,
137

opening 21-22, 133-138

organizaton 26-30, 253280
Sew also lields, headers

pathnames. Sew pathname{s)

FRODDS 53, 55, 56-58

reading 21-22, 24, 272
directory liles I56-266

reflerence numbers 21, 24-25,
137, 26%
al e 145, 152

relsticnship amang Chierarchical)
-]

renaming 21, 85

run-time library 193, 199, 200,
230

sspling 29, 262, 288, 270-271

seedling 29, 262, 268, IT0

size of 14, 24, 269

330 Incen

source 75, 89
sparse xv, 14, 30, 85, 253,
273-774
standard 25-27, 254, 267, ITD
formas and organization of 267
locating & byte in a Mle
174275
reading 141-142, 2372
S5TART 58, 61-62
structure of 20, 26
subdirectory. See subdireciories
systemn 10, 12, 14, 18
TOOL.SETOF 53, 56
transferring dats 1o and [rom 21
tree 29, 262, 2T1-272
growing 267-269
types. S file types
using 18-25
volume directory, See volume{s)
writing 24, 143-144
lile access ealls 136152, Ser alio
specific call
file blocks 26-29
hlock read and block write 44
data 28, 267, Z70-271, 274
index 28, 267, 270, 271
key 254-255, 270, IT2
master index 2B, 260, 271
organization of directory liles 28
stze of 33
sparse [iles and 30
fle control block 22, 24, 145
file direciary eotry 7, 25-26, B4,
201-264, 206
file entry field, See felds
file hmzkﬂplng calls. 110=134.
Sew alio specific call
File Mark, See Mark
filenames
extensions 58, T4
number of characters in 14
requirements of 18
wpographic convention for o
file sysiemis), See alio spacific
operaling iyilem
guest 102
10 45
version number 263, 305
lile type attribute field 263, 278-
]

file types 263, 278-279
$05 12, 224
§B3 58, 64, T4, B), B9
$B3-5HE 12, 83, I, 329
$B4 230
§85 64, 209
$B5 54, 56
87 54, 56
$BE 54, 56
§HO 54, 56
§FF 12, 56, 38, 83, 134
listing of 278-279
File Type utily (APW) B9
fling calls
Apple Il operating systems
286-287
PeoDOS 16, See sypstem calls or
apectfic caill
finder 207-208
FindHandle eall (Memory Manager)
T
firmware &, 70-72
5.25-inch disk drives 46
fag word 168, 245
Nags
busy 36, 96
-, m-, and x-fMlags &4
Jump-Table-Loaded 201, 233
quic 245
return &1, B2, 168
FLOSH call 24-25, 146
Mushing files 24-25, 146
fomts 52
FORMAT call 12, 14, 42, 44-45,
155, 290
description of 160-161
lformaning. See disks; FORMAT call;
volume(s)
function names, typographic
convention for xxl

(<]

games B3

GET_BOOT_VOL eull 12, 67, 133
description of 166

GET _DEV_NUM call 12, 43, 44-45
descripgion of 155

GET_koF call 23, 286
description of 150

GE:‘I;;LE_IHL-'-:I call 21, B5-86, hierarchical flie system 7, 283 uslng B3, See alio programming L M addresses 34, 36-37, B2, i:::ﬁ
-127 ik . - 3 Cog Soe alko addresses; pointe
GET_LAST DEV call 12, 42, 44 high-resolution display, memary interrupt contrel calls. Ses system language-card area in memary M, machine configuration. = 3

banks for 33
Hurman Interface Guidelines
P91 See alio programming

allocation of B See alio

Fﬂ‘l:lﬂ'll'ﬂlﬂll'lﬂ
banks. Ses memory banks

calls or spcific call 64
interrupe dispatcher 95 Janching, See application(s)
interrupt handlers xv, 5-6, 9, 15, LCONST records 187, 297

configuratian
Macintosh compater 90
macros XV, &

description af 156
CET_LEVEL call 12, 25, 80, 145
description of 152

o b i : et bank-switched 33-34
Get Load Segment Info call 175 E:';.-,r i hh:;ﬁm 193, 195200 M:m 10, See User 1D blocks: S memory blocks
{';;s:;; Loaderd 206, IIIJ conventions 4 5206 : manuals av-xvil, xix-xx compaction ‘38

GET_MARX call 23, 148
GET_NAME call 12, 23, 67, 148
description of 165
Get Pathiname call (System Loader)
242243
SET_PREFIX call 20, 65, 165
description of 133
Get User ID call (System Loader)
240-241
GET_VERSION call 12, 80, 258,
B0, 264, 158
description of 171
global page (Prol>OS 8) 10, 356
Apple llos equivalents 1o 80
plobal vasiables 79, 300, See alo
programming; System Loader
graphic design 21

H
halting eurrent program (Gontrol-
Reset) 25
handlers, interrupt. See interrupt
handlers
handles. See memory handles
hardware
configuration &7
Intesrupts. See interrugpi(s)
registers £
requirements for Pralios 16
xvili-xix
stack 75
header fields. See fields, headers:
segmentis)
headers
directory 356-259, See abo
volume(s)
segment 1B5, 299, Sew alo
segment(s)
subdirectory 259-261, Se¢ abo
subdirectorjes

file system. See file systemi(s)
User, Sew User D
index blocks. See file blocks
Initialization. See system startup;
reglster(s)
Inintalization files 53-54. Soe ako
“filea}
initialization segments 224, 184
Initializing. See disks; registers.
valume(s)
Initial Load call (System Loader)
d22-24, 227, M0
Inpast devices, delinition of 42
Sew abio device(s)
input/eutput
buffers 14, 21-22, 24-25, 34,
137, See also buffers; fleds)
character &
memory 33, 64, See alio
metnory
similarity among operating
systems IES
space in HAM 31
standard 64, 2oe
subwoutines xix, 70
input/output devices, definition of
42, See alio device(s)
Interface, human 90-9]
interpreter. See BASIC Inter preter
nterrupt{s}
allocating and deallocating %5
disabling &1, 100
handling. Seeinterrupt handlers
number of imMerrupting devices
handled 9
priority rankings 48
support of, similiarky among
operating syslems 288
systermn calls during 96
lable, Ses interrupt vector table
unclaimed 49, B3, 95

converting PraDOS5 8 to

ProlOS 16 88
deallocating 167
imstalling 25
introduction o $4-946
modifying 88
I!L:Ebﬂ' supponed (user-installed)

Scheduler and 71
systemn calls during 96
Internspt Request Line 49
inlermupt routines. See (nterrupt
handlers
Interrupt vector table 99, 175, 177
TNTERSES records 187, 189,
195-1%6, 297
O, See Inpuloutpot
[RQ). See Interrupt Request Line

J

Joysticks 42

Jump Table, See System Loader
data whles

Jump Table Load call (System
Loader) 195-1%94, 213

description of 247-248
Jump-Table-Loaded flag 201, 235

K

kernel 5

key block. See file blocks

keyboard 4243

key combinations, Sas Contral-
Reset

KIND segment header field 188,
193, 224, 296, Ser abio
headers; segment(s)

Index a31

subroutine TO, 80

library prefixes. See pathname
prefixes

Linker (APW) 89

linkers 76, 89,189

List Directory command {Exerciser)
291

listings, catalog, Seecutaloging
dishs

load, initial 183-1%4, 20%,
222-224, 240. See abo

Systern Loader

Loader Initialization call (System
Loader) 213

Loader Resat call (System Loader)
20

Loader Shutdown call (System
Loader) 217

Loader Starup call (System Loader)
216

Loader Saatus call (System Loader)
221

cader Version call (Sysiem Loader)
21B-21%

load [fes 183, 193, 205, 329, 208,
Sow alro filels)

load Segment By Name call
(System Loader) 206,
2342364

Load Segment By Mumber call
(System Loader) 206, 224,
35

description of 2Z8-229

load segments. See segment(s);
System Loader

loading. See application(s), System
Loader

locked blocks, See memory biocks

long word, size of 33, 102

lerwercase leters 18

33z Index

Apple Numerics Manwal xvi-xvii
Apple le Technical Refernce
Meanual 34
Apple lics Firmuare Reference
wvl-xvil, xix, 9, 43, 47, 95
Apple lles Hardware Reference
avi-xvil, 33-3
‘Apply Iles Prol2OS 16 Reference
xvi-xvil
Apple Tas Programmaer's
Workshap Awembler Reference
xvi-xwiil, oo, 90
Apple lics Programmar's
Workshop © Refererice
xvi-xvii, 2or, 90
Apple IG5 Programmer’s
Workshop Referemce xvi-xvil,
xx, 9, 70
Apple ffas Toolbox Reference
xvioxvii, xix, B-9, 3, 36, 40,
43, 49, T0-72, 7A, EI-B3, 96,
300
Human Inlesface Cuidelines
xvi-avil, H0-21
Proli05 8 Technical Reference
Manual xvi-xvili, xx, 5, 60
Programmer's Iniroduction o
the Apple lles xvi-xvil, xix,
40, 81
Technical Infroduction 1o the
Apple Igs xvli-xvii, xix, 4,
33, 100
Mark 21-24, 26, 30, 143,
201-202, 273-274, See alio
Filels)
master index blocks. See file
bilocks
masier pointers. See pointer(s)
memory 6, B, 32-40. Se¢ abo
RAM; ROM
addressable, total 9, 32

configurations 32-36
conserving space 22
entry points and fived locations
35-36
expansion 33
handies. See memory handles
140, See input/output
language—card areas 34, 641
manzgement. S memory
management; Memory Manages
map 3%, 35
movable 82 See alic memody
blocks
non-special 54
obaining (applicaticns) 3540
requesting 3940
requirements of ProlHO8 16 xvild
reserved 64
shadowing 34, &4
special 34, 37, 62, 78, 224
units, size of 33
video 33-34
memory banks 33-36
500 33-34, 47, 56, 61, 64, 68,
75, 81, B8, 100, 105, 24
$01 3334, 64, TM
$01-5E1 64
SE0 34
SEI 3436, 65, 105
memory blocks 26-20, 185, See
alio block devices; Memory
Manager
absolute 40
addresses of 38
applications and 3%
attributes of 57
disposing 38, 245
fixed (unmovabled 37, 40,
78-79, 82, 1B5-186
handles to. See memory handles
load-segment relationships (load
time) 185

print spoolers 83 stack and rero page, converting

processor status register G4, 105 BB

ProDOs xxi, 3L See alio upward compatibility 10-11
operating system(s); PraDOS 8, *ProDOS is busy® ermor. See errors
PraDO5 16 ProDO5 16 xxi, 4-1% Sew alo

ProDOS busy flag. See busy Mag manuals; operating system(s) or

apecific fopic

prefixes, See pathname prefixes
requirements of 19

gment 184, 199, 200, 298
ok and e 28 St‘%" also segment{s)
definition of 253 pathname prefices 5, 14, 19-20,
N ORC segmeont header field 185, 5569, 131
Sor aio headers; segment(s)

locked 37-38, 77-79, 184, 227

manipulation of 37-33

mavable 185, 231

pointers o 38-39, &2

purgeable 37.38, TE-79,
185-186, 277, 233

Madify Memory command
{Exerciser) 291
Monilor program xix, 281, 203

similarity of 285-288
arganization {files)

e s . application. 66-67, 165, 201 eRopos file 53, 95, 56-58
unpurgeable 185-186, 277 e ﬁiﬁlﬂi’“‘*’ outpul devices, definition ef 42 boot &5, 67, 166 ProD0S 8 xwill, 5, 9-13, 52, adding WAMmEd o MegY
ot oy Sigeriy O ittt Hm;m; Seer also devices) code numbsers af 20 BO-6H1, 170, See abo manuals, bypassing 6

194, 200, 214
definition of 214

dereferencing 39, 82, 104, 207

intreduction 1o 38-39

length of (parameter fields) 106

NIL 187, 192193, 277
memary management 10, 15,
32-40, 38-39. See abo
Memory Manager
how applications obezin memary
35

revising Prol0s 8 applications for

ProlD(5 16 &5
similarity amang opetating
systems 207-2BB
Memory Manager xix, 8, 32,
36-37, 64, 7, 79, #2, 182,
187, 20§, 227, 231, 245, 247
Seet also memary mangement
calls 207
description of 36-37, 70
interface with Systern Loader
184-187
memary blocks and 104, 185
suppon for bank-alignment 300
Memary Segment Table 184,
1R7-18%, 192-193, 206, 227,
231, 238
Messapes, See errar messagos
m-flag 04
microprocessors, See 6502,
S5CE16
Miscellaneous Tool Set. See
System Failure Manager; User
[Manapes
modes, emulation and native 4, 9
47, 100 N
modification date and time Bi-86,
20d, 276, Sew alio creation
date and time; programming
medilication field 276

volume{s)
malive mode 4, 9, 47, 100, Ses
alo programming
MewHandle call (Memory Manager)
™
NEWLINE call (§11) 137-140
nibble, size of 33

NIL handles, See memory handles

nuimbers
deviee. See device(s)

pathname peefix. See pathname
prefixes

e
objedt files. See filegs)
ohject module format 70, 74, 89,
187, 230, 29%
objoct segments. S segment(s);
direct page and stack
OMF. See object module formart
ON_LINE call (Prol305 8) B4
ofiline devices. Sow device(s)
CFEN call 21, 80, 151-152, 287
description of 137-138
Operating environment %, 52-72,
1. See alio specific topic
operating system{s), Apple 11,
comparison of 281-28R. See
also specific operating sysiem
or spacific fopdc
calls, o system calls
default al stanup 13
file compatibility 283-284
reading DOS 3.3 and Apple 1
Pascal disks 284
filing calls 286287
history of 281-282
mputfoutput 285
interrupt support 288
memory management 287

overflow, stack. Sew stack(z)
averlays 205

P
page, size of 33, 291, See ako
metmory
parameter(s) 102-104
blocks. See parameter blocks
ficlds 105
format 102-103
lcng of poimers and handles
|

order of bytes in a fietd 103
order on stack 214
permissible range of values 103
107
pointers and 102-103, 106
selling up i memory 103-104
System Loader 213
tvpes of 102, 213
parameter blocks 10, 81-82, 83,
100-104
Pascal operating system
file system 284
filing calls 287
histary of 283
interrupl suppon 288
LD 28%
memory management 287
reading Pascal disks 284
Pascal strings 201
patches. Soe HAM, Apple llos
paiching 188, 194
pathname(s} 7, 19-21, 65-69,
117, 199
assigning 21
full 192, 69, 201
length of 20
aumber of characters in 14
partial 19, 45, 69, 168, 01, 241
pointers 61, §2

Index 323

default 65, 131
initial ProfO5 16 values 66
Introdusction o 6562
library 6567, 201
multiple 20
null 20
number al characters o 14
numbers 66-67, 81, 131, 168
partial pathnames 19
predefined 65
PraDOs B prefix and pathname
conventions 68-69
samples of 66
storage of 66
systemn (ProDO5 B) 66, 69
values of G7=68
Pathname Table 189, 196,
200=201, 206, 227, M5
peripheral devices, See device{s)
pointer(s) 26, 38-39. Ser alro
EOF;, Mark; memory handles
definition al 102, 214
fields. Sew ficlds
length of (parameter fields) 106
master 38
arder of byes 256
parameter block 38-39, 82
pathname &1, &3
part numbers 7

ports
communication 9, 43
disk =ix, 45
serial xixn
FQUIT S6, 59-62. See alio QUIT
wll

ProD05 8 guiT calls, standard
and enhanced 60
ProDOS 16 QUIT call &1
;:lr\e-.!j,xr_':, p:.l.'hmmz Sew pnlhnu.ml:
prefixes
printers 3, 43

334 Inclex

operating system(s)
applications, memory banks for
33
binary files 12, 224, 283
description of xxi, 4
enhanced QUIT call &0-61

« file systerm 283

filing calls 286

global page 10, 36, 79-B0

history of 282

interrupt supporl 288

170 285

loading 156

memory and 3, B6-ET

on an Apple 11GS va. other
Apple I computers 5

pathname of current application

prefix 6862

quit type &0

standard QUIT call 60-61

syatem calls 9-11,10%

system disk 56

system flie 12, 58, 182, 224

system prefin 66, 68

system program 12, 58, 182,
224

unit (device) number 84

ProDOS 8 and ProlX0816 9-10,

B6-89, 105-106

call methods compared 105-106

calls, converting B8

compilation/assembly B9

downward compatibility 11

eliminated ProDOS B system calls
11

hardware confligumtion 87

interrupt handlers, modilying BB

mamory management 80

new ProDOs 16 system calls 11

revising applications B6-BY

doscription of xxi, 4=15

errars 302-309. Sew alo ermors

external devices and 42-49

fined Iocatians 65

history of 283

nterface o 8D

introduction @ 4=15

memeory and xviil, 32-40

memory map 35

new sysem calls 12

ProDOS 8 and. See Prol>O5 B

and PraDos 16

summary of features 13-15

system calls. See systemn calls

version number 171
ProDO5 16 Exerciser. Soe

Exerciser

program bank register. See
registers

PIOEIam counier register, See
TEgisLers

Programmer's Workshop, See
Apple llGs Programmer's
Workshop

programming xix, 74-91. See alro
specific topic

application requirements 74
direci page and stack, See direct
page and stack
eveni-driven Xix
levels in Apple llos 3-7
segmented xix
suggestions for T4-91
System Loader 203-210
system resource mandgemont
To-B4

programs. See applicaticn(s);
controlling programs; static
programs

publications, See manuals

purge levels 37, 77-78, 185-186,

231
purgeable segments. See
segment{s)

™
CUIT call (ProD05), standard and

enhancod G0-61

purT eall (ProDOS 16) 15, 59-61,
62, 74, 77, 82, 207, 210,

245. Ser also PQUIT
description of 167-170
return flag parameter 61, 852

Quiz command (Exerciser) 204
quit flag 245
QULT procedure 02, See abo

QUIT call

quit return stack 167, Ser also
stackis)

quitting applications, See
applicaticris)

quit type (ProDOS B 60

B
RAM {Apple llc or [le} 34
RAM CApple las) 32, See alio
MEmioey
fixed entry points in 35
170 space in 33
patches o ROM-based tool sets
52-53
specialized areas in 33
loo] sets 33, 52
RAM disks 43
READ BLOCK call 42, 44, 284
description of 157-158
READ eall 24, 42, 44, 85, 139
description of 141-142
reading
directory files 265-266
disks, DOS 3.3 and Pascal 284
files 24, 272
ReadTime call (Miscellaneous Tool
Sel) BO
records 187, 231, 297
cINTERSEG 187, 298
cRELOC 187, 297
nDs 187, 297

END 298
INTERSEG 187, 189, 195-196,
297
LCONST 187, 297
RELOC 1&7-188, 297
SOFER 187, 298
reference number (raf_nurd, See
file reference awmber
reglsters 64, 224
accumulator TT=TH, 104, 209,
213
data bank 104
direct 70, 7779, 104
hardware &4
mizalizing 81, 209
processar status 64, 105
program bank 104
program counter 104
stack pointer 75, 77-79, 104
values an entry and exit fram call
104, 213
X reglster 64, 104, 204
Y register &4, 104, 208
reloading applications. See
application(s)
Heload sepments. See segment(a)
relocatable segments. See
segment(s)
relocation dictivnaries 187-188,
195, 201
RELDE recards 187-188, 297
HENAME call 277
renaming files. See file(s)
requests. See calls; systemn calls
Restart call (System Loader) 201,
08
description of 225-237
restant-from-memory Nag 168
restarting. Seeapplicatian(s)
result, definition of 102, 213
return flag (Q01T call) &1, 82, 168
revising ProDOS 8 applications for
PraDOS 16 B6-89. Sew also
application(s); ProDOS 8 and
PraDOs 16, programming
ROM (Apple Ilc or 1) 34
BOM (Apple Mcs) 32, 4546, See
alie memary
expansion card 4546
routines In xix, 6

tool sels 33, 52-53
routines. Saw alio interrupt
handiers; libraries
adding to Prol:05 16 5397
Apple llas Toolbax @
filecopying 84
interrupt, See interrupt handlers
library xv, 70, 80
names of, typographic
convention for xxi
program selection (PQUITY 59
ROM xix, &
run-time libraries. Sewlibraries

5
sapling files 29, 252, 268,
270=2T71
Scheduler 71, 95
soctors 43, 254, 282, 284
scedling flles 29, 268, 270
segmentis)
absolute 182-183, 186
allgnment factor 299
bank-aligned 299
direct-page/stack 76, 78, 166,
224
dynamic 1B2-1E3, 185-186,
193, 196, 204-208, 224, 224,
245
header ficlds 185, 299
initialization 184, 224, 237
Jump Table. Sae System Loader
EIND field 186, 193, 224, 296
libraries 70, 79
lead 71, 76, 183, 185-186, 195,
230
load numbers 298
locking 207
main 295
Memaory Segment Table. See
System Loader data tabjes
ohiect 76
pape-aligned 200
pathname 184, 199, 200, 298
position-independent 183, 185,
186
puigeable 77-78, 183, 185%-186,
207, 231
Reload 225, 277, 297

Imetex 3as

relocatable 182-183, 1B5-18%
run-time libraries 206
statie 15, 77, 183, 193, 204,
224, 58
unloading 207
wnlocked 207
segmented programming Xix
sequential-access devices, See
device(s)
serial ports, routines for xix
sE7_EOF call 23, BS
description of 149
SET_FILE_InrFocall 21, B6,124,
260, 264, 277
description of 119-122
SET_LEVEL call 12, 25, 145
description of 151
SET_MARY call 23, 286
description of 147
SET_PREFIX call 20, 64, 68,165
description of 131-133
shadowing 34, 64, See alio
memory
shadow reglster 64
Shell (APW) B2, B9, 208
shell applications 208
shells 207, 222, 22%. Sev ako
controlling programs
shutting down. Seeapplication(s)
GSCA16 assembly language. See
assembly language
5502 microprocessor 4, 9, T3
16-bit mode. Sea native mode
slashes, profives and 19
slot numbsers 7, 46, Ses alo
expansion slots
slots, See expansion slots
SmartPort 4545
sall switches, Initializing &4, 81
saftware. Sed also operating
systemn{s); BAM disks; sysem
disks; system software

compatibility 4, 10-11. See alio

ProDOE 8 and ProDOS 16
requirements xvlik-xix
sandard Apple [I 34

505 operating system
file system 27H, 284, 67
filing calls 286
history af 282

334 Inclex

interrupt support 288
/0 285
memory management 287
source files 79, See alio file(s)
sparse [iles. See file(s)
special memory. Ser memory
5 reglster {stack polmer). See
registers
stack(s). Soe ale direct page and
stack
dingram format (System Loader
calls) 214
hardware 75

locations, converting ProDiO3 8w

Prol0s 16 B8
overflow 77
pointer 7%, TT-79, 104
quit return stack 167
stanvdard Apple 1. See Apple 11,

standard
standard files 26=27, 270, See
celser file(s)
format and organization of 267
reading 272

standard [/0. See inpaa/output
standard QUIT call (Prolx05 8)
G061
START file 58, 61-52
startup, Serapplication(s); system
startup
stalic programs 77, 204, Saw also
System Loader
static segments. See segment(s)
status register 105 storage
devices, See device(s)
sarage wype fleld 275
subdirectories 7, 26, §3-5%4, 56
Sew alio directories
file entry and 84
files 254
headers 259-261
library B0
subroutines, See routines
SOPER records 187, 298
swichers 207, 222, 215
system. calls xix, f=13, W4,
QR-177, See alocalls or

specific call
call block 100

converting Prol05 8 to
PralOS 16 88
definition al 100
description format 106-107
device calls 154-162
environment calls 1864-171
Exerciser disk and 250
file acoess calls 136-13%2
file housekeeping calls 110-134
filing calls. Sew file access calls;
file housekeeping calls
interrupt control calls T4-1TT
interrupt handlers and 26
parameter blocks 100-102, See
alse parameter(s}
practicing with Exerciser 290
ProDO5S A 11, 105
PmMO5 16 (new) 12
register values on entry and oxit
from 104
systemn call reference 58-177
s_.lg[-em disks xix, 52-5% Sew alo
disks; system sartup
application 52, 54-53%
complete 52-53
sundard Apple 1 55-50, 69
System Failure Manager 4%, 72, 83
systemn file (ProDOS B 12, 58,
182, 224
sysem file bevel 25, BO, 145,
151-152, 167
Spstem Loader 33-35, 37, 52, 55
63, 77-78, 181-301, Sev ale
recofds
calls. See System Loader calls or
specific call
contralling program design and
207-209. See alo controlling
prngral:u
data tables. See Syslem Loader
daia tables
description of 70, 182-183
dormant state 62, 168, 183,
225, 233, 246
dynamic segments and 204-20%
"5ee also segrhemis)
entry point 35, 300
errars A10-311
functions (categorized by caller)
210

global variables 300

interface with Memory Manager
184-187

Introduction o 70, 182-189

load-file structure 187

loading relocutable segments
187189

memory map of 34-35

memory requirements of xviii

parameiers 213-214

programming with 203-210

reference for xix

relocation 18H-189

restarting and shutting down
applications 205-210

mun-time libraries and 205206

segment loading, weser comtrol of
200-207. See also segments)

static programs and 204

lechnical data 295-301

lerminology 153184

version aumber 218-219

System Loader calls 210-2%0, See

alo specific cull

call block 213

categaries of 210

descriplion formal 214

how calls are made 213

parameter types 213-214, Sag
alio memory blocks;
paametens)

System Loader data tables

192-203

Jump Table 159, 193-198, 233
Jump Table Direciory

193104, 196
diagram of 198
directory entry 154
1 modiication a1 load time 196

Jurnp Table Load call

195196, 213, 247-248

Jump-Table-Loaded fag 201,

235

I segmenl entry 194-197, 237
segments 201, 298, 193-195
Ser alio segment(s)
(FETE] duri:nE executhon 196=157

Mark Liz 201-202

Bl DERIEN] TatHe
192-193. See alio segment(s)

Pathname Table 199-201
system prefix (ProDOS B} 66,
6860
system program {ProlOS 23 12
o8, 182, 224
system resources, managing
R4
system sofiware TO-72. See alio
system disks, soltware
memory banks and 33
User [0 and 71
sysiem startup 55-39, 210
bool initialization 52, 56-57
default operating system 13
device search 4546
*introduction o 55-59
Loader imitialization 215
program selection 58-59
rebeating 49

T
tables, See interrupt vector table;
System Loader data tables
time. S creation date and time;
modilication date and time
toalbox, See Apple [los Toolbox
toal calls 6-7. Sew abo specific
toal
tools xix, 70=72, 182 Sa¢ abko
HAM-based tools; ROM-based
loals or specific tool
L.SETOF file %3, %6
racks 43, 254, 282, 284
transfierring
dala o and from files 21
sparse files 30
tree flles 28, 29, 262, I71-272
growing 267-260
TypelDd. See User D

w

unclaimed interrupts, Soe
interrupt{s}

Unilisk 55 43

Unload Segrment By Mumber call
(System Loader) 207, 237

Hmeeription of 2303 333
uppercase letters 18

User ID 37, 61, T, 77, 167-168,
186, 192, 19%4-195, 100, 206,
0B, 200, I3, 126127, 230,
233, 240, 245. See alo
Memory Manager; User 1D
Manager

AuxID 30

format 300-301
MainlD 208, 223, 31
TypelD T1, 223, 30

User 1D Manager 71, 184, 300-301

LUser Shutdown call (System Loader)
185, 209, 225

description of 244-246

v
value, definition of 102, 213
variables, global, See global
varlables
VCH, See volume controd blocks
veclors. S interrupl vector table
vertor space values G4
version mumbers
Me system 58, 260, 263, 305
object module format 230
Pralx05 16 171
System Loader Z18-219
video memary. See memory
valume{s) 7-8 ., Sew abo file(s)
boot 81
directories 7, 18, 254
direciory headers 256-250
formaring 254
names 7, 14, 18 43, 117
organization of information on
254-255
sipes of 14
volume bit map 254, 258
VvOLUME call 11, 44, 80
description of 128-130
volume control blocks 47

w

word, size of 33, 102, See alo
Inn.E waord

WRITE_BLOCK call 43, 44, 284,
ama

description of 159

Index a7

WRITE call 24, 42, 44, 85,264, I7

description of 143-144
write-enable bit 137
writing

applications B9

files 24

x-r=-1

% flag 64

X register &4, 104, 208

Y register &4, 104, 208

rero page 75, A, See alvo direct

page

338 Inclex

ProDOS 16 Calls ke: PRODOS entry point 209 S0A $0B
I5L PRODOS = §F1 O0AS | SET_PREFIX GET_PREFIX CLEAR_BACKLP _RIT
I2 "CALLNUM'

14 "PARMBLOICK" g o e o of

'r.'IE{T-:If}}-:H“ SRR Each minor division in a 1 prefi_num - voiue 1 prEfls_num 7 e 1[Sl B R

ERb parameter bock dicgram 2] 2 [] 2 ll: pathnome : poanie

i S) refresenits one bpte -' refix d saini ; L — I E—
s | s
501 502 S04
CREATE DESTROY CHANGE _PATH
o[] o 1 [510 511 $12
A " Jd poirier) pathinam | poriter -~ VL e i i OPEN NEWLINE READ
] 3 1 3 o ol]
al HEEER] F - rat_Rium = JEsult 1 I rif_nfwm — fEiull I ret_riwem = woiug
5 . i il M
-: i g iz] i ;“ SRR S ‘ r T’: pnoble_moik = wolug .': B -
7] 71 = pothinam - portar p = data_buffer - pairiar
B[1 . . : P newline_cho < valug sk
Al S e] vore af o BB o .
- .;. = = el al reqiseEs _count o
mF storoge_typs 7L] ° [7]
rF creole_date I o F -
| ~ trofwler_count = tesud

F create time o voiue ¥ B

505 §06 408 $13 §14 §15
SET_FILE_INFO GET_FILE_INFO VOLUME WRITE CLOSE FLUSH

: - —_— r a o
ol 8 . L 4 | rel_mim — vl : red_num value y el pusm -I value
- pathihame E 1 pairtr - F dew_namse = poiniter 7
3l 3 b 3 = y I n
pu _— S ! EE—— = datoe_butter - painter
1 ®_ :
4 — L isiicia 4 ” et 4] pi]
5 =351 * b ELTET - o e I - "
= 5 5L vol_name
ok file_typd Jvoue o] Hle_typi o repun ol 3) .
E 7 { g lF I:"'|'||||"I e irit -1 voke
| il B
g T 2 aux_type 7 o 9 g E
Al au_type - volue s o tr - rmsuft M = total_blocks = rep .
B[5 g [‘fotelbiock g B 1 Bl P
i - = = rarafar courd ~ st
I:-' - Cridll iy o walu el storoge_type - gLt alF - i [
£ —_— | L* - . fred DIoCks = rosud
£F create_dole WHLE ': - craate_date =| rasuft Flr
||'_ e bar e~ o wnl i)
te_time W a B cmata Hime - mmsuft - file svs Id - ragut
11 I oiue BsUl ; v B
e | i TL et — 516 $1K
e mod_date o wolue o mod_daote - rasul SET_MARK SET_EOF
14 |
4 . A - m
mod_fime - woius | mred_fim o rosa o , f
15 - o 15 i ol i 3 F el _num - vola I'-; - walum - el _num = e
" 5 -
- i i 21 £
! blocks_uaed - et 3 . 3
¥ i postion = Ok a = (e a1l Laly] =] neEsull . eaf = VOl
5 -1 e = il =1

519 51A 518 Fiel
P_RIT GET_EOF SET_LEVEI GET_LEVEL e

“F rat_num e |‘ s ‘I vealuie | el | RS Access Byte Scgment KIND
tar 1 1 ————————— i TS] =

qi] | 5 25 5 O

D = destrov-enable bit 8D = 1. segment is dynamic
BN = rename-enab

Pr 1: segment i prvaie
P1 = 1. segment is position
independent

B = backug

GET_DEV_NUM GET_LAST_DEV READ_BLOCK B
S = R = read-enabic bit M | ment may not be in specia

&20 421 S22

== al dav_nama . . P | AB = 1: segment is absolue-bank
= - pointar 5 o B data hulte Gl ——— | R = 1: segment s a Reload segmen
- s ia T - ab |
—_— o ! Creation/Modification Date Type Description
=L - K00 cocdde sepmenl
int 1 value sl ack AU - volus i AL $01 data segment
o - L !

473 '_'| 502 Jurmp Table segment
Day | $04 Pathname

ull ~| nedull 308 library dictionary segmenl
= 523 &7 & £10 initialization segment

FORMAT GET_NAME §12 direct-page/stack segment

SEEmenl

i R - 5 Creation/Modification Time User ID Word
dota_tatte 4 ooint
- —| T Haigf e X J
L -
: Tile_sys_id 1 i Typelld Description
ol 1 L0 Memory Manager
3
31 application
52 contrelling progra

Version Word 53 *05 B and ProDOS 16

529 S2A % i 84 toad set!

l!T_]"l GET_VERSION ICEFR R P 55 desk dccessory
Q : - 1
[P —] | QT — 14 run-Lime f
| { f j sl Syistem Losider
a pathhama - paoint - firmware/system function
1 B - B = 0 for final releases Tool |
-. s _'_ ; B =1 for prototype releases fundef i
if 04, these values of AuxID are
i
Miscellaneouws oolset file
:I_ valug §31 532
= 1 ALLOC INTERRUPT DEALLOC INTERRUPT
1 File Mark
7| volue L = FEp— 2
ﬁ II = Ir i I a : :
. = |
= o .

P o] : i [3 rol | Ypes (continued)

]

I'vpe Code Descriptlon Type Code Description

A

es0lt vari:

AS

& $1102 5 $F1 am lile
81 \, :
L 51 '] 5
- I 31 ile wersion error 4
& 31108 r [0 erroe i
5 >l
i 51 Seg 4
L1104 q
5 B 1 ¢
521 | .
I i
§5} 3)& :
' .
vl L] i A | i
£42 : i
543 m] &
Fad
$44
%4 E
548 ' A i
g4 ~
{s
[1 I
tA I it It alse L 1 28
formal ; .
L4H Unsupported (or incors slorage o - i
3 1% 2 1
il of-file e I I data) A 11 al I
0% 1 AP obiject fike 1
34D o MR = ay
: i1 AP library file i
3 brary i]
s I ol A pathrame is @ sequence of | AMCs E application prog i) clary
\
ITE i i d separated by slashes) I i L
Ut 1 |] BTl : AP CF
1 | Tl RN] i
& L » 0 y 1 I =L
353 [rang i with a slash Cand a 1
1 i
; [LR i k

ime Beging with a filename o

Description

System Loader Calls

1. Push mesult space (as shown
on Sack Before Call) onto
the stack

L

Push inpul parmamelers (in
order shown on Stack
Before Call) onto the stack

Execute call block:
LIxX #§11+Funchum | 8
J5l Drispatcher
PuncMum = number of
function being called
Dispatcher = Tool dispatcher
(address = SE1 00000
I On completion, results will

be in order shown on Stack
After Call

Each minor division in a stack
diagram represeris T word
(2 bytes)

509
Initial Load
Stack Before Call:

provvou canterts
(regult soocal
frewdt saoca)l

L (resut spoce) -

fresal sooco)
Lsri
odavas of
iood-fig nomeg
Fpeciol -mamory fag

Stack After Call

previous contents [

[ov pogefiock sve |
gv. poge/fack godr

] = starting oddes o

Lsenll

S04
Loader Version
Stack Before Call

Stack Afler Coall:

| proveoul conterts |

Varsan |
I e
S0A
Restart

Stack Before Caill

pravious conhernts
(Rt spoce)
(rasLdT FDOCE)

- (gt spoce) =

{revunt spoca)
Lisal}

- 5P

Stack After Call

EH:“-'U_'!. conhims
or_pogefock sire
o, poge fEfack ookar,

= sofing oddnes o

LiarD)

la-5p

506
Loader Status
Stack Before Call

previous confanis

Stack After Cail

orevious confents
11

S0B

Load Segment By No.

Stack Before Call

prendows contents

= fresult space)

LiserD

inog-hw numbar

BDad-sagmeanl N

Stack After Call:

previous contants

aokanast af
sopmant

i

-—sp

oo

:i-lvsr

S0C
Unload Seg. By No.

Stack Before Call

lppd-segrneenl ne

-, 5P

Stack Affer Call

peevious contenls

$0F

Get Load Segment Info

Stack Hefore Call:

Stack After Call

1 previous conterts |
| it 1

§12
User Shutdown

Stack fefore Call

50D
Load Seg. By Name

Stack Before Call

o [|
Inad-sEgment nomea

5P
Stack After Caill
|#-sp
510
Get User ID
Stack Before Call
il CONIBtE |
Lr e
1Ry of _
B DaingEmss
= Y
' 5P

Stack Afler Cail

S0E
Unload Segmeni
Stack Before Call

Stack After Call

piEvdous corntenty

lpod sogmard_no

| lood-file na
U=

| g p

511
Get Pathname
Stack Before Call

1 SO

comlerniy |

.l— {resull sSpocel

——doumcdtia. ma e el
Ch fva numbeay |
ta-zp
Stack After Call
| orians
I_ povess of H
i pathnamea
[- 5P

© Apple Computer, Inc., 1987

-

The Official Publication from Apple Computer, Inc.

Written by the people at Apple Computer, Inc., this is the sethoritative gusde o the

new Apple llos™ operating sysiem. ProDOS™ 16 is an advanced ProDOS with

extended fle-mansgement. device-maragement, mnd intermept-handling capabilities,

It can launch both standard Apple® 11 programs and new Apple lcs programs.

This manual gives an overview of the operating system and o detailed

documentation of its programming features. Specialized wpics inchude

* Lsing the QUTT call 10 pass execution from one application program o ancther.

+ Switching rapidly among applications by making them dormant and reszrming them.

* Writing controlling programs such as shells and swirchers

* Writing interrupt hundlers.

* Working with multiphe pathname prefiues

* Conwerting applications based on Pral305 8 o woek with ProDOS 16

The Appile fs ProfX0S 16 Reference 5 omganized into four parts:

» Part | shows how FroDiOS 16 waodks and explains how it diffises from its
predecessor, FroDOS &

* Part I describes all Prol08 16 commands {system calls) in detal

» Part Il documents the System Loadera flesible programming ool that loads,
unloacls, and manipulates program segments in memory

= Part IV consists of appendixes, a glossary, and an index. The appendixes describe
the ProD08 16 file structure, outine the history of Apple I operating sysems,
explain the ProDOS 16 Exgreiser disk, st all ProDOS 16 and Svstem Loader error
codes, and provide additional System Loader technical information.

Aquickreference cand bound o the mamel tabulites ProDOS 16 and System

Loader calls, ermors, and daca structures. The Exerciser disk in the back pocket allows

vou 1o prractice making ProDOS 16 calls before acnully writing an application program

Wrien for assembly-linguage programmens and advanced wsers, the Afple fls

ProDOS 16Refevence is indispensahbe for understanding and designing

Apple Ths application programs,
 Inc.
-y
inws, Caloemia #5014
mml. wnia
TIX 7576 Frintesd in 1154

Addison Wesley Publishing Company, Inc. ISBN O0-201-17754-4

